K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2017

Bài 1 :

\(a,\left(a-b\right)+\left(c-d\right)-\left(a-c\right)=-\left(b+d\right)\)

Ta có : \(VT=\left(a-b\right)+\left(c-d\right)-\left(a-c\right)\)

                 \(=a-b+c-d-a+c\)

                 \(=-\left(b+d\right)=VP\)

\(\Rightarrow\left(a-b\right)+\left(c-d\right)-\left(a-c\right)=-\left(b+d\right)\)

\(b,\left(a-b\right)-\left(c-d\right)+\left(b+c\right)=a+d\)

Ta có : \(VT=\left(a-b\right)-\left(c-d\right)+\left(b+c\right)\)

                 \(=a-b-c+d+b+c\)

                 \(=a+d=VP\)

\(\Rightarrow\left(a-b\right)-\left(c-d\right)+\left(b+c\right)=a+d\)

14 tháng 1 2017

Bài 1 : Biến đổi vế trái , ta có :

\(\left(a-b\right)+\left(c-d\right)-\left(a-c\right)\)

\(=a-b+c-d-a+c\)

\(=\left(a-a\right)-\left(c+c\right)+\left(-b-d\right)\)

\(=-b-d=-\left(b+d\right)\)

Vậy đẳng thức được CM

b, Biến đổi vế trái , ta có :

\(\left(a-b\right)-\left(c-d\right)+\left(b+c\right)\)

\(=a-b-c+d+b+c\)

\(=\left(a+d\right)+\left(-b+b\right)+\left(-c+c\right)=a+d\)

Vậy đẳng thức được CM .

Bài 2 : Gọi \(d=ƯCLN\left(2n+1,2n+3\right)\)

\(\Rightarrow\left\{\begin{matrix}2n+1⋮d\\2n+3⋮d\end{matrix}\right.\) \(\Rightarrow\left(2n+3\right)-\left(2n+1\right)⋮d\)

\(\Rightarrow2⋮d\Rightarrow d\in\left\{1;2\right\}\)

Vì : với mọi STN n thì 2n + 1 và 2n + 3 là số lẻ

\(\Rightarrow d=1\RightarrowƯCLN\left(2n+1,2n+3\right)=1\)

Vậy ...

p/s : bài 2 đề có sai k mợ ?? :vv

14 tháng 1 2017

ko sai đâu

6 tháng 4 2020

Bài 3:

a, A= n+3 / n-1

   A = n-1+4 / n-1

   A = 1 + 4/n-1

Để A là số nguyên thì 4/n-1 nguyên

=>4 chia hết n-1

=> n-1 thuộc Ư(4)={1;-1;2;-2;4;-4}

=> n thuộc {2;0;3;-1;4;-3}

b, B = 2n+3 / n-1

  B = 2(n-1) + 5 / n-1

  B= 2 + 5/n-1

Để B nguyên thì 5/n-1 nguyên

=> 5 chia hết cho n-1

=> n-1 thuộc Ư(5)={1;-1;5;-5}

=> n thuộc {2;0;6;-4}

a)Gọi ƯCLN (\(n+3;2n+5\))=d

\(\Rightarrow\left\{{}\begin{matrix}\left(n+3\right)⋮d\Rightarrow2\left(n+3\right)⋮d\Rightarrow\left(2n+6\right)⋮d\\\left(2n+5\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

⇒ƯCLN (\(n+3;2n+5\))=1

\(\Rightarrow\frac{n+3}{2n+5}\)là phân số tối giản(đpcm)

b)Gọi ƯCLN (\(2n+9;3n+14\))=d

\(\Rightarrow\left\{{}\begin{matrix}\left(2n+9\right)⋮d\Rightarrow3\left(2n+9\right)⋮d\Rightarrow\left(6n+27\right)⋮d\\\left(3n+14\right)⋮d\Rightarrow2\left(3n+14\right)⋮d\Rightarrow\left(6n+28\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left(6n+28\right)-\left(6n+27\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

⇒ƯCLN (\(2n+9;3n+14\))=1

\(\Rightarrow\frac{2n+9}{3n+14}\) là phân số tối giản.(đpcm)

c)Gọi ƯCLN(\(6n+11;2n+5\))=d

\(\Rightarrow\left\{{}\begin{matrix}\left(6n+11\right)⋮d\\\left(2n+5\right)⋮d\Rightarrow3\left(2n+5\right)⋮d\Rightarrow\left(6n+15\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left(6n+15\right)-\left(6n+11\right)⋮d\)

\(\Rightarrow4⋮d\)

\(\left(6n+15\right);\left(6n+11\right)⋮̸2\)

\(\Rightarrow d=1\)

⇒ƯCLN(\(6n+11;2n+5\))=1

\(\Rightarrow\frac{6n+11}{2n+5}\)là phân số tối giản (đpcm)

d)Gọi ƯCLN(\(12n+1;30n+2\))=d

\(\Rightarrow\left\{{}\begin{matrix}\left(12n+1\right)⋮d\Rightarrow5\left(12n+1\right)⋮d\Rightarrow\left(60n+5\right)⋮d\\\left(30n+2\right)⋮d\Rightarrow2\left(30n+2\right)⋮d\Rightarrow\left(60n+4\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

⇒ƯCLN(\(12n+1;30n+2\))=1

\(\Rightarrow\frac{12n+1}{30n+2}\) là phân số tối giản (đpcm)

e)Gọi ƯCLN(\(21n+4;14n+3\))=d

\(\Rightarrow\left\{{}\begin{matrix}\left(21n+4\right)⋮d\Rightarrow2\left(21n+4\right)⋮d\Rightarrow\left(42n+8\right)⋮d\\\left(14n+3\right)⋮d\Rightarrow3\left(14n+3\right)⋮d\Rightarrow\left(42n+9\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

⇒ƯCLN(\(21n+4;14n+3\))=1

\(\Rightarrow\frac{21n+4}{14n+3}\)là phân số tối giản (đpcm)

f) Gọi ƯCLN(\(2n+3;n+2\))=d

\(\Rightarrow\left\{{}\begin{matrix}\left(2n+3\right)⋮d\\\left(n+2\right)⋮d\Rightarrow2\left(n+2\right)⋮d\Rightarrow\left(2n+4\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left(2n+4\right)-\left(2n+3\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

⇒ƯCLN(\(2n+3;n+2\))=1

\(\Rightarrow\frac{2n+3}{n+2}\)là phân số tối giản (đpcm)
g) Gọi ƯCLN(\(n+1;3n+2\))=d

\(\Rightarrow\left\{{}\begin{matrix}\left(n+1\right)⋮d\Rightarrow3\left(n+1\right)⋮d\Rightarrow\left(3n+3\right)⋮d\\\left(3n+2\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left(3n+3\right)-\left(3n+2\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

⇒ƯCLN(\(n+1;3n+2\))=1

\(\Rightarrow\frac{n+1}{3n+2}\) là phân số tối giản (đpcm)

17 tháng 12 2017

a, Gọi ƯCLN(5n+7,2n+3)=d,ta có:

5n+7 chia hết cho d => 2(5n+7) chia hết cho d => 10n+14 chia hết cho d

2n+3 chia hết cho d => 5(2n+3) chia hết cho d => 10n+15 chia hết cho d

=>10n+15-(10n+14) chia hết cho d

=> 1 chia hết cho d

=> d=1

=> ƯCLN(5n+7,2n+3)=1

=> đpcm

b, Ta có: \(11^{n+2}+12^{2n+1}\) 

\(=11^n.121+12^{2n}.12\)

\(=11^n.121+144^n.12\)

\(=11^n.121+12.11^n+144^n.12-12.11^n\)

\(=11^n\left(121+12\right)+12\left(144^n-11^n\right)\)

\(=11^n.133+12.\left(144^n-11^n\right)\)

Mà \(144^n-11^n⋮144-11=133\)

\(\Rightarrow11^{n+2}+12^{2n+1}⋮133\)

4 tháng 2 2018

a, n+5 chia hết cho n-1 => n-1+6 chia hết cho n-1 => 6 chia hết cho n-1 hay n-1 thuộc Ư(6)

=> n-1={1,-1,2,-2,3,-3,6,-6} 

=>n={2,0,3,-1,4,-2,7,-5}

Các TH khác tương tự nk

4 tháng 2 2018

b, 2n-4=2(n+2)-8

c, 6n+4=3(2n+1)+1

22 tháng 11 2017

Chào bạn!

Ta sẽ chứng minh bài toán này theo phương pháp phản chứng

Giả sử \(\left(a;c\right)=m\)\(V\text{ới}\)\(m\in N\)\(m\ne1\)

Khi đó \(\hept{\begin{cases}a=k_1m\\c=k_2m\end{cases}}\)

Thay vào \(ab+cd=p\)ta có : \(k_1mb+k_2md=p\Leftrightarrow m\left(k_1b+k_2d\right)=p\)

Khi đó p là hợp số ( Mâu thuẫn với đề bài)

Vậy \(\left(a;c\right)=1\)(đpcm)

7 tháng 11 2021

khó quá

mình cũng đang hỏi câu đấy đây

 

23 tháng 9 2017

^ là gì vậy?

7 tháng 10 2017

mik ko biết