\(\frac{1}{a}\)  = \(\frac{1}{a+1}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2016

Bài 4

Để phân số A có giá trị trong tập hợp số nguyên thì tử phải chia hết cho mẫu.

-> n+3 chia hết cho n-2

->n-2+5 chia hết cho n-2

mà n-2 chia hết cho n-2

-> 5 chia hết cho n-2

->n-2 thuộc Ư(5)={-1,1,-5,5}

=>n thuộc {-3,3,1,7}

Vậy các số nguyên n thỏa mãn là -3,1,3,7

1 tháng 5 2020

1) \(\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}=\frac{1}{a+1}+\frac{a+1-a}{a\left(a+1\right)}=\frac{1}{a+1}+\frac{1}{a}-\frac{1}{a+1}=\frac{1}{a}\)

Vậy: \(\frac{1}{a}=\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}\)

\(\frac{1}{5}=\frac{1}{6}+\frac{1}{5.6}=\frac{1}{7}+\frac{1}{7.6}+\frac{1}{5.6}=\frac{1}{7}+\frac{1}{42}+\frac{1}{30}\)

2) \(A=\frac{n+3}{n-2}=1+\frac{5}{n-2}\)

A nhận giá trị nguyên <=> \(\frac{5}{n-2}\) nhận giá trị nguyên 

<=> \(n-2\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

<=> \(n=\left\{-3;1;3;7\right\}\)

1 tháng 5 2020

Mình học dốt nên chỉ làm được bài 2 thôi :)

\(A=\frac{n+3}{n-2}=\frac{n-2+5}{n-2}=1+\frac{5}{n-2}\)

Để A nhận giá trị nguyên => \(\frac{5}{n-2}\)nhận giá trị nguyên

=> \(5⋮n-2\)

=> \(n-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

n-21-15-5
n317-3

để ps A nguyên thì n+3 chia hết cho n-2

suy ra (n-2)+5 chia hết cho n-2

suy ra 5 chia hết cho n-2

suy ra n-2 thuộc {1;-1;5;-5}

n thuộc {3;1;7;-3}

2)có 1/(a+1)+1/a.(a+1)=a.(a+1)/[(a+1).a.(a+1)]+(a+1)/[(a+1).a.(a+1)](nhân chéo)=a.(a+1)+(a+1)/a.(a+1).(a+1)=(a+1)(a+1)/a.(a+1).(a+1)=1/a

áp dụng :1/5=1/(5+1)+1/5.(5+1)=1/6+1/30

17 tháng 2 2015

1.

A=\(\frac{n-2+5}{n+2}\)có công thức \(\frac{a}{c}+\frac{b}{c}=\frac{a+b}{c}\) 

A=\(1+\frac{5}{n-2}\)

Ư(5)={-5;-1;1;5}

thay giô các kết quả 

n-2=-5

n=-2 ( chọn)

n-2=-1

n= 1 (chọn)

n-2=1

n=3 (chọn)

n-2=5

n=7 (chọn)

vậy n= -2;1;3;7

 

 

2.

\(\frac{1}{a}=\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}\)

ta biến đổi \(\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}\)thành \(\frac{1}{a}\)

ta thấy trong \(\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}\)có về 2 gấp vế trước a lần

ta quy đồng  \(\frac{a}{a.\left(a+1\right)}+\frac{1}{a\left(a+1\right)}=\frac{a+1}{a.\left(a+1\right)}\)cùng có a+1 ở tử và mẫu ta cùng gạch thì nó thành

\(\frac{1}{a}\)

vậy :\(\frac{1}{a}=\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}\)

30 tháng 4 2018

1.a.ta có:\(\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)

mà \(\frac{2017}{2018}>\frac{2017}{2018+2019};\frac{2018}{2019}>\frac{2018}{2018+2019}\)

\(\Rightarrow M>N\)

b.ta thấy:

\(\frac{n+1}{n+2}>\frac{n+1}{n+3}>\frac{n}{n+3}\Rightarrow\frac{n+1}{n+2}>\frac{n}{n+3}\)

=> A>B

30 tháng 4 2018

Trịnh Thùy Linh ơi mk cảm ơn bạn nhìu nha =)), iu bạn nhìu

19 tháng 4 2018

a) ta có:

\(\frac{n+1}{2n+3}\)là phân số tối giản thì:

\(\left(n+1;2n+3\right)=d\)

Điều Kiện;d thuộc N, d>0

=>\(\hept{\begin{cases}2n+3:d\\n+1:d\end{cases}}=>\hept{\begin{cases}2n+3:d\\2n+2:d\end{cases}}\)

=>2n+3-(2n+2):d

2n+3-2n-2:d

hay 1:d

=>d=1

Vỵ d=1 thì.....

19 tháng 4 2018

Bài 2 :

Để A = (n+2) : (n-5) là số nguyên thì n+2 phải chia hết cho n-5

Mà n-5 chia hết cho n-5

=> (n+2) - (n-5) chia hết cho n-5

=> (n-n) + (2+5) chia hết cho n-5

=> 7 chia hết cho n-5

=> n-5 thuộc Ư(5) = { 1 : -1 ; 7 ; -7 }

Ta có bảng giá trị

n-51-17-7
n6412-2
A8-620
KLTMĐKTMĐKTMĐKTMĐK

Vậy với n thuộc { -2 ; 4 ; 6 ; 12 } thì A là số nguyên

 

bài 1 : với giá trị nào của x\(\in\)Z, các phân số sau là một số nguyên                                                                                                  A=\(\frac{3}{x-1}\) B= \(\frac{x-2}{x+3}\)C = \(\frac{2.x+1}{x-3}\)bài 2 : tìm n\(\in\)Z để tích hai phân số \(\frac{19}{n-1}\)( với n \(\ne\)1) và \(\frac{n}{9}\) có giá trị là số nguyên.bài 3 :...
Đọc tiếp

bài 1 : với giá trị nào của x\(\in\)Z, các phân số sau là một số nguyên                                                                                                  A=\(\frac{3}{x-1}\) 

B= \(\frac{x-2}{x+3}\)

C = \(\frac{2.x+1}{x-3}\)

bài 2 : tìm n\(\in\)Z để tích hai phân số \(\frac{19}{n-1}\)( với n \(\ne\)1) và \(\frac{n}{9}\) có giá trị là số nguyên.

bài 3 : tính

A= \(\left(1-\frac{2}{5}\right)\)\(\left(1-\frac{2}{7}\right)\).\(\left(1-\frac{2}{9}\right)\).......\(\left(1-\frac{2}{2011}\right)\)

B= \(\left(1+\frac{2}{3}\right)\).\(\left(1+\frac{2}{5}\right)\).\(\left(1+\frac{2}{7}\right)\).........\(\left(1+\frac{2}{2009}\right)\)\(\left(1+\frac{2}{2011}\right)\)

bài 4 : chứng tỏ rằng 

\(\frac{1}{1.2}\)\(\frac{1}{2.3}\)\(\frac{1}{3.4}\)+ .......+ \(\frac{1}{49.50}\)< 1

bài 5: rút gọn biểu thức sau

A= \(\frac{3.5.7.11.13.37-10101}{1212120+40404}\)

1
20 tháng 4 2017

bài 1 A là số nguyên <=> 3 chia hết cho (x-1) <=> (x-1) thuộc Ư(3) = { 1;-1;3;-3}

<=> x thuộc {2;0;4;-2}