\(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2018

a, Ta có :

\(\dfrac{1}{6}< \dfrac{1}{5}\)

\(\dfrac{1}{7}< \dfrac{1}{5}\)

.................

\(\dfrac{1}{9}< \dfrac{1}{5}\)

\(\dfrac{1}{10}=\dfrac{1}{10}\)

\(\dfrac{1}{11}< \dfrac{1}{10}\)

..................

\(\dfrac{1}{17}< \dfrac{1}{10}\)

\(\Leftrightarrow\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+......+\dfrac{1}{17}< \dfrac{1}{5}+\dfrac{1}{5}+....+\dfrac{1}{5}\)

\(\Leftrightarrow A< \dfrac{1}{5}.5+\dfrac{1}{10}.8\)

\(\Leftrightarrow A< 1+\dfrac{4}{5}=\dfrac{9}{5}< 2\)

\(\Leftrightarrow A< 2\left(đpcm\right)\)

b/ Ta có :

\(\dfrac{1}{11}>\dfrac{1}{30}\)

\(\dfrac{1}{12}>\dfrac{1}{30}\)

...............

\(\dfrac{1}{29}>\dfrac{1}{30}\)

\(\dfrac{1}{30}=\dfrac{1}{30}\)

\(\Leftrightarrow\dfrac{1}{11}+\dfrac{1}{12}+........+\dfrac{1}{30}>\dfrac{1}{30}+\dfrac{1}{30}+.......+\dfrac{1}{30}\)

\(\Leftrightarrow B>\dfrac{1}{30}.20=\dfrac{2}{3}\)

\(\Leftrightarrow B>\dfrac{2}{3}\left(đpcm\right)\)

27 tháng 3 2017

A=\(\dfrac{2}{7}+\dfrac{-3}{8}+\dfrac{11}{7}+\dfrac{1}{3}+\dfrac{1}{7}+\dfrac{5}{-3}\)

A=\(\left(\dfrac{2}{7}+\dfrac{11}{7}+\dfrac{1}{7}\right)+\left(\dfrac{1}{3}+\dfrac{5}{-3}\right)+\dfrac{-3}{8}\)

A=\(2+\dfrac{-4}{3}+\dfrac{-3}{8}\)

A=\(\dfrac{7}{24}\)

B=\(\dfrac{3}{17}+\dfrac{-5}{13}+\dfrac{-18}{35}+\dfrac{14}{17}+\dfrac{17}{-35}+\dfrac{-8}{13}\)

B=\(\left(\dfrac{3}{17}+\dfrac{14}{17}\right)+\left(\dfrac{-18}{35}+\dfrac{17}{-35}\right)+\left(\dfrac{-5}{13}+\dfrac{-8}{13}\right)\)

B=\(\dfrac{17}{17}+\dfrac{-35}{35}+\dfrac{-13}{13}\)

B=\(1+\left(-1\right)+\left(-1\right)=-1\)

C=\(\dfrac{-3}{17}+\left(\dfrac{2}{3}+\dfrac{3}{17}\right)\)

C=\(\dfrac{-3}{17}+\dfrac{2}{3}+\dfrac{3}{17}=\left(\dfrac{-3}{17}+\dfrac{3}{17}\right)+\dfrac{2}{3}\)

C=0+\(\dfrac{2}{3}=\dfrac{2}{3}\)

D=\(\left(\dfrac{-1}{6}+\dfrac{5}{-12}\right)+\dfrac{7}{12}\)

D=\(\dfrac{-1}{6}+\dfrac{5}{-12}+\dfrac{7}{12}\)

D=\(\dfrac{-2}{12}+\dfrac{-5}{12}+\dfrac{7}{12}=\left(\dfrac{-2}{12}+\dfrac{-5}{12}\right)+\dfrac{7}{12}\)

D=\(\dfrac{-7}{12}+\dfrac{7}{12}=0\)

15 tháng 5 2018

a) Giải

Đặt \(M=\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{98}{99}\)

\(\Rightarrow A< A.M\)

hay \(A< \left(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{99}{100}\right).\left(\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{98}{99}\right)\)

\(\Rightarrow A< \dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}.\dfrac{5}{6}.\dfrac{6}{7}...\dfrac{98}{99}.\dfrac{99}{100}\)

\(\Leftrightarrow A< \dfrac{1.2.3.4.5.6...98.99}{2.3.4.5.6.7...99.100}\)

\(\Rightarrow A< \dfrac{1}{100}< \dfrac{1}{10}\)

Vậy \(A< \dfrac{1}{10}\)

1 tháng 5 2017

Kiyoko Vũ

a, xét từng đoạn 1 , 1/2 ,1/2^3 ,1/2^4 ,1/2^5 ,1/2^6
ta có
1 = 1
1/2 + 1/3 < 1/2 + 1/2 = 1
1/4 + 1/5 + .. + 1/7 < 1/4 +..+ 1/4 = 4/4 = 1
1/8 + 1/9 + .. + 1/15 < 1/8 + .. + 1/8 = 8/8 = 1
tương tự
1/16 +1/17 + .. + 1/31 < 1
1/32 + 1/33 + .. + 1/63 < 1
=> cộng lại => A < 6

b, Câu hỏi của trịnh quỳnh trang - Toán lớp 6 - Học toán với OnlineMath

31 tháng 3 2017

a;\(\dfrac{-6}{11}\) : \(\dfrac{12}{55}\) = \(\dfrac{-5}{2}\)

b;\(\dfrac{7}{12}\) + \(\dfrac{5}{72}\) - \(\dfrac{11}{36}\) = \(\dfrac{47}{72}\) - \(\dfrac{11}{36}\) = \(\dfrac{25}{72}\)

c;\(\dfrac{13}{10}\) : \(\dfrac{-5}{13}\) = \(\dfrac{-169}{50}\)

d; {\(\dfrac{5}{12}\) + \(\dfrac{5}{11}\) } : { \(\dfrac{5}{3}\) -\(\dfrac{7}{11}\) } = \(\dfrac{115}{132}\) : \(\dfrac{34}{33}\) = \(\dfrac{115}{136}\)

lưu ý mk ko chép đầu bài

31 tháng 3 2017

mình cần gấp lắm đến chiều mai là phải nộp rùi

giúp mình nha thanks cá bạn trước vuiko có tâm trạng mà cười nữalolanglimdim

22 tháng 4 2018

giúp mình đi mà ToT khocroi

20 tháng 3 2017

a , \(\left(\dfrac{-2}{3}+1\dfrac{1}{4}-\dfrac{1}{6}\right):\dfrac{-24}{10}\)

=\(\left(\dfrac{-2}{3}+\dfrac{5}{4}-\dfrac{1}{6}\right):\dfrac{-12}{5}\)

=\(\left(\dfrac{-8}{12}+\dfrac{15}{12}-\dfrac{2}{12}\right)\cdot\dfrac{-5}{12}\)

=\(\dfrac{5}{12}\cdot\dfrac{-5}{12}=\dfrac{-25}{144}\)

b , \(\dfrac{13}{15}\cdot0,25\cdot3+\left(\dfrac{8}{15}-1\dfrac{19}{60}\right)1\dfrac{23}{24}\)

=\(\dfrac{13}{15}\cdot\dfrac{1}{4}\cdot3+\left(\dfrac{8}{15}-\dfrac{79}{60}\right)\cdot\dfrac{57}{24}\)

=\(\dfrac{13}{20}-\dfrac{47}{60}\cdot\dfrac{57}{24}\)

=\(\dfrac{13}{20}-\dfrac{893}{480}=\dfrac{312}{480}-\dfrac{893}{480}=\dfrac{-581}{480}\)

c , \(\left(\dfrac{12}{32}+\dfrac{5}{-20}-\dfrac{10}{24}\right):\dfrac{2}{3}\)

=\(\left(\dfrac{180}{480}-\dfrac{120}{480}-\dfrac{200}{480}\right)\cdot\dfrac{3}{2}\)

= \(\dfrac{-7}{24}\cdot\dfrac{3}{2}=\dfrac{-7}{16}\)

d , \(4\dfrac{1}{2}:\left(2,5-3\dfrac{3}{4}\right)+\left(-\dfrac{1}{2}\right)\)

=\(\dfrac{9}{2}:\left(\dfrac{5}{2}-\dfrac{15}{4}\right)-\dfrac{1}{2}\)

=\(\dfrac{9}{2}:\dfrac{-5}{4}-\dfrac{1}{2}=\dfrac{9}{2}\cdot\dfrac{-4}{5}-\dfrac{1}{2}=\dfrac{-18}{5}-\dfrac{1}{2}=\dfrac{-41}{10}\)

e , \(\dfrac{-5}{2}:\left(\dfrac{3}{4}-\dfrac{1}{2}\right)=\dfrac{-5}{2}\left(\dfrac{3}{4}-\dfrac{2}{4}\right)\)

=\(\dfrac{-5}{2}:\dfrac{1}{4}=\dfrac{-5}{2}\cdot4=-10\)

21 tháng 3 2017

2) Tinh nhanh:

a) \(\dfrac{5}{23}\) . \(\dfrac{17}{26}\) + \(\dfrac{5}{23}\) . \(\dfrac{10}{26}\) - \(\dfrac{5}{23}\)

= \(\dfrac{5}{23}\) . \(\left(\dfrac{17}{26}+\dfrac{10}{26}-1\right)\)

= \(\dfrac{5}{23}\) . \(\left(\dfrac{27}{26}-1\right)\) = \(\dfrac{5}{23}\) . \(\dfrac{1}{26}\)

= \(\dfrac{5}{598}\)

21 tháng 3 2017

b) \(\dfrac{1}{7}.\dfrac{5}{9}+\dfrac{5}{9}.\dfrac{2}{7}+\dfrac{5}{9}.\dfrac{1}{7}+\dfrac{5}{9}.\dfrac{3}{7}\)

= \(\dfrac{5}{9}.\left(\dfrac{1}{7}+\dfrac{2}{7}+\dfrac{1}{7}+\dfrac{3}{7}\right)\)

= \(\dfrac{5}{9}\) . 1= \(\dfrac{5}{9}\)

Bài 1: 

a: \(A=\dfrac{1\left(\dfrac{1}{13}-\dfrac{1}{17}-\dfrac{1}{23}\right)}{2\left(\dfrac{1}{13}-\dfrac{1}{17}-\dfrac{1}{23}\right)}\cdot\dfrac{\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}}{\dfrac{7}{6}-\dfrac{7}{8}+\dfrac{7}{10}}+\dfrac{6}{7}\)

\(=\dfrac{1}{2}\cdot\dfrac{2}{7}+\dfrac{6}{7}=\dfrac{1}{7}+\dfrac{6}{7}=1\)

b: \(B=2000:\left[\dfrac{\dfrac{2}{5}-\dfrac{2}{9}+\dfrac{2}{11}}{\dfrac{7}{5}-\dfrac{7}{9}+\dfrac{7}{11}}\cdot\dfrac{-\dfrac{7}{6}+\dfrac{7}{8}-\dfrac{7}{10}}{\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}}\right]\)

\(=2000:\left[\dfrac{2}{7}\cdot\dfrac{-7}{2}\right]=-2000\)

c: \(C=10101\cdot\left(\dfrac{5}{111111}+\dfrac{1}{111111}-\dfrac{4}{111111}\right)\)

\(=10101\cdot\dfrac{2}{111111}=\dfrac{2}{11}\)

12 tháng 3 2017

Bài 2:

Ta có: \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};....;\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

\(\Rightarrow A< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}=1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=2-\dfrac{1}{100}< 2\)

Vậy A < 2

Bài 3:

D = \(\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right)....\left(1-\dfrac{1}{2015}\right)\)

\(=\dfrac{1}{2}.\dfrac{2}{3}......\dfrac{2014}{2015}\)

\(=\dfrac{1.2......2014}{2.3......2015}=\dfrac{1}{2015}\)

Bài 4:

A = \(\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}......\dfrac{899}{900}\)

\(=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}........\dfrac{29.31}{30.30}\)

\(=\dfrac{1.2.3......29}{2.3.4.......30}.\dfrac{3.4.5......31}{2.3.4.....30}\)

\(=\dfrac{1}{30}.\dfrac{31}{2}=\dfrac{31}{60}\)