K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2016

Chứng minh bt k phụ thuộc vào biến:

a) \(A=\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)

\(=6x^2+33x-10x-55-6x^2-14x-9x-21=-76\)

Vậy giá trị của A k phụ thuộc vào biến

b) \(\left(x-1\right)^2+\left(x+1\right)^2-2\left(x+1\right)\left(x-1\right)\)

\(=\left[\left(x-1\right)-\left(x+1\right)\right]^2=\left(x-1-x-1\right)^2=-2^2=4\)

Vậy giá trị của bt B k phụ thuộc vào biến

Chứng minh luôn luôn dương:

a) \(A=x\left(x-6\right)+10=x^2-6x+9+1=\left(x-3\right)^2+1\)

Vì: \(\left(x-3\right)^2\ge0,\forall x\)

=> \(\left(x-3\right)^2+1>0,\forall x\)

=>đpcm

b) \(B=x^2-2x+9y^2-6y+3=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1=\left(x-1\right)^2+\left(3y-1\right)^2+1\)

Vì: \(\left(x-1\right)^2\ge0,\forall x;\left(3y-1\right)^2\ge0,\forall y\)

=> \(\left(x-1\right)^2+\left(3y-1\right)^2\ge0,\forall x,y\)

=> \(\left(x-1\right)^2+\left(3y-1\right)^2+1>0\)

=>đpcm

18 tháng 12 2016

còn bài này

c, C= (2x+3)(4x2-6x+9)-2(4x3-1)

Bài 3: 

a: \(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

=-5n chia hết cho 5

b: \(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)\)

\(=n^2+4n-n-4-\left(n^2+n-4n-4\right)\)

\(=n^2+3n-4-\left(n^2-3n-4\right)\)

\(=6n⋮6\)

31 tháng 8 2020

M = ( x + 1 )3 - x3 + 1 - 3x( x + 1 )

= x3 + 3x2 + 3x + 1 - x3 + 1 - 3x2 - 3x

= 2 

Vậy M không phụ thuộc vào biến ( đpcm )

N = ( 2x - 1 )3 - 6x( 2x - 1 )2 + 12x2( 2x - 1 ) - 8x3

= [ ( 2x - 1 ) - 2x ]3 ( HĐT số 4 )

= [ 2x - 1 - 2x ]3

= [ -1 ]3 = -1

Vậy N không phụ thuộc vào biến ( đpcm )

13 tháng 12 2017

a.=3x2+12x-7x+20+2x3-3x2-2x3-5x

=(3x2-3x2)+(12x-7x-5x)+(2x3-2x3)+20

=20

b.=6x-3-5x+15+18x-24-19x

=(6x-5x+18x-19x)+(-3+15-24)

=-12

2 tháng 7 2019

a) x(3x + 12) - (7x - 20) + x2(2x - 3) - x(2x2 + 5)

<=> x.3x + x.12 - 7x - 20 + x2.2x + x2.(-3) + (-x).2x2 + (-x).5

<=> 3x2 + 12x - 7x - 20 + 2x3 - 3x2 - 2x3 - 5x

<=> (3x2 - 3x2) + (12x - 7x - 5x) - 20 + (2x3 - 2x3)

<=> 0 + 0 - 20 + 0

<=> -20

=> biểu thức không phụ thuộc vào giá trị của biến

b) 3(2x - 1) - 5(x - 3) + 6(3x - 4) - 19x

<=> 3.2x + 3.(-1) + (-5).x + (-5).(-3) + 6.(3x) + 6.(-4) - 19x

<=> 6x - 1 - 5x + 15 + 18x - 24 - 19x

<=> (6x - 5x + 18x - 19x) + (-1 + 15 - 24)

<=> 0 - 10

<=> -10

=> biểu thức không phụ thuộc vào giá trị của biến

Bài 1: 

b: 

x=9 nên x+1=10

\(M=x^{10}-x^9\left(x+1\right)+x^8\left(x+1\right)-x^7\left(x+1\right)+...-x\left(x+1\right)+x+1\)

\(=x^{10}-x^{10}-x^9+x^9+x^8-x^8-x^7+...-x^2-x+x+1\)

=1

c: \(N=\left(1+2+2^2+2^3+2^4\right)+2^5\left(1+2+2^2+2^3+2^4\right)+2^{10}\left(1+2+2^2+2^3+2^4\right)\)

\(=31\left(1+2^5+2^{10}\right)⋮31\)

22 tháng 8 2020

A = (3x - 5)(2x + 11) - (2x + 3)(3x + 7)

A = 3x(2x + 11) - 5(2x+  11) - 2x(3x + 7) - 3(3x + 7)

A=  6x2 + 33x - 10x - 55 - 6x2 - 14x - 9x - 21

A = (6x2 - 6x2) + (33x - 10x - 14x - 9x) + (-55 - 21) = -76 => không phụ thuộc vào biến x (đpcm)

B = (2x + 3)(4x2 - 6x + 9) - 2(4x3 - 1)

= 2x(4x2 - 6x + 9) + 3(4x2 - 6x + 9) - 8x3 + 2

= 8x3 - 12x2 + 18x + 12x2 - 18x - 27 - 8x3 + 2

= (8x3 - 8x3) + (-12x2 + 12x2) + (18x - 18x) + (-27 + 2) = -25 => không phụ thuộc vào biến x (đpcm)

22 tháng 8 2020

A= ( 3x - 5 ) ( 2x+11) - (2x+3)(3x+7) 

=\(6x^2+23x-55-\left(6x^2+23x+21\right)\) 

=\(6x^2+23x-55-6x^2-23x-21\)  

= -76 

Vậy A không phụ thuộc vào x