Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C1 : Dấu hiệu chia hết cho 11 :
1 số chia hết cho 11 và chỉ khi tổng các số hàng chẵn / lẻ chia hết cho 11
Theo giả thiết /ab + /cd + /eg = 10a + b + 10c + d + 10e + g = 11. ( a + c + e ) + ( b +d + g ) - ( a + c + e ) chia hết cho 11
Suy ra : ( b + d + g ) - ( a + c + e ) chia hết cho 11
Suy ra abcdeg chia hết cho 11
C2 : Ta có
abcdeg = ab . 10000 = cd . 100 + eg
= ( 9999ab ) + ( 99cd )+ ( ab + cd + eg )
Vì 9999ab + 99cd chia hết cho 11 và ab + cd + eg chia hết cho 11
Suy ra : abcdeg chia hết cho 11
( cách nào cũng đúng nha )
a) Ta có: ab - ba = 10a +b - 10b - a = (10a - a) - (10b - b)
= a(10 - 1) - b(10 - 1) = 9a - 9b = 9(a - b)
\(\Rightarrow\)(ab - ba ) \(⋮\)9 (vì có chứa thừa số 9)
b) Ta có: abcd = 100ab + cd = 99ab + ab + cd
Vì 99ab \(⋮\)11; (ab + cd) \(⋮\)11
\(\Rightarrow\)(99ab + ab + cd) chia hết cho 11
\(\Rightarrow\)(ab + cd) chia hết cho 11 thì abcd chia hết cho 11
c) Ta có: abcdeg = 1000abc + deg = 1001abc + (abc - deg)
Vì 1001abc chia hết cho 13
(abc - deg) chia hết cho 13
\(\Rightarrow\)abcdeg chia hết cho 13
\(\Rightarrow\)(abc - deg) chia hết cho 13 thì abcdeg chia hết cho 13.
Bài 4: b) Vì n(n+1)(n+2) là tích của 3 số tự nhiên liên tiếp.
=> Tồn tại 1 số chia hết cho 2.
Tồn tại 1 số chia hết cho 3.
=> n(n+1)(n+2) chia hết cho cả 2 và 3.
c) Ta có: n(n+1)(2n+1)=n(n+1)[(n+2)+(n-1)]
=n(n+1)(n+2)+n(n+1)(n-1)
Nhận thấy: n(n+1)(n+2) và n(n+1)(n-1) là tích của 3 số tự nhiên liên tiếp
=>Tồn tại 1 số chia hết cho 2.
Tồn tại 1 số chia hết cho 3.
=> n(n+1)(2n+1) chia hết cho 2 và 3.
bài 3 nah không biết đúng hông nữa
n=20a20a20a=20a20a.1000+20a=(20a.1000+20a).1000+20a=1001.20a.1000+20a
theo đề bài n chia hết cho 7,mà 1001 chia hết cho 7 nên 20a chia hết cho 7
ta có 20a = 196+(4+a),chia hết cho 7 nên 4 + a chia hết cho 7 .Vậy a = 3
Vì abc và deg đều chia 11 dư 5 nên abc-deg chia hết cho 11.
Ta có: abcdeg=1000abc +deg=1001abc+(abc-deg)
1001abc chia hết cho 11
abc-deg chia hết cho 11
Vậy abcdeg chia hết cho 111
Ta có
abcdeg = abc x 1000 + deg
= deg x 2 x 1000 + deg
= deg x 2000 + deg
= deg x 2001
= deg x 29 x 69 chia hết cho 69
=> đpcm
Ta có:
abcdeg = ab x 10000 + cd x 100 + eg
= ab x 9999 + cd x 99 + (ab + cd + eg)
Do ab x 9999 chia hết cho 11; cd x 99 chia hết cho 11; ab + cd + eg chia hết cho 11 => abcdeg chia hết cho 11
=> đpcm
Ủng hộ mk nha ^_-