K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2017

b) B = x(2x + 1) - x2 . (x + 2) + x3 - x + 3

= 2x2 + x - x3 - 2x2 + x3 - x + 3

= 3 => giá trị của biểu thức ko phụ thuộc vào x

8 tháng 7 2017

c) C = (x + 1)(x2 - x + 1) - (x - 1)(x2 + x + 1)

= x3 + 13 - (x3 - 13) (hằng đẳng thức số 6 và 7)

= 2 => gt của biểu thức ko phụ thuộc vào x

a: \(\left(2x+\dfrac{1}{3}\right)\left(4x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)-\left(8x^3-\dfrac{1}{27}\right)\)

\(=8x^3+\dfrac{1}{27}-8x^3+\dfrac{1}{27}=\dfrac{2}{27}\)

b: \(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)\cdot x\)

\(=x^3-3x^2+3x-1-x^3+1+3x\left(x-1\right)\)

\(=-3x^2+3x+3x^2-3x=0\)

c: \(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)=0\)

27 tháng 5 2017

minh chua co luot k nao k minh di

28 tháng 5 2017

Bài 1:

a)\(A=x\left(x^2-y\right)-x^2\left(x+y\right)+y\left(x^2-x\right)\)\(=x^3-xy-x^3-x^2y+yx^2-yx=-2xy\)

Thay x=1/2 và y=-100 vào biểu thức A ta được \(A=-2.\frac{1}{2}.\left(-100\right)=100\)

b)\(B=\left(x^2-5\right)\left(x+3\right)+\left(x+4\right)\left(x-x^2\right)=x^3+3x^2-5x-15-x^3-3x^2+4x\)=-x-15

Thay x=-1 vào biểu thức B ta được B=-(-1)-15=1-15=-14

26 tháng 10 2018

Bài 1:

a) \(2x^2y-xy=xy\left(2x-1\right)\)

b)\(2x^2-x-2y^2-y=\left(2x^2-2y^2\right)-\left(x+y\right)\)

\(=2\left(x^2-y^2\right)-\left(x+y\right)\)

\(=2\left(x-y\right)\left(x+y\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(2x-2y-1\right)\)

26 tháng 10 2018

Bài 2:

a)\(x^3-\frac{1}{9}x=0\)

\(\Leftrightarrow x\left(x^2-\frac{1}{9}\right)=0\)

\(\Leftrightarrow x\left(x-\frac{1}{3}\right)\left(x+\frac{1}{3}\right)=0\)

\(\Rightarrow x=0\text{ hoặc }x-\frac{1}{3}=0\Leftrightarrow x=\frac{1}{3}\text{ hoặc }x+\frac{1}{3}=0\Leftrightarrow x=-\frac{1}{3}\)

Vậy...

b)\(\left(x+1\right)^2=5x\left(x+1\right)\)

\(\Leftrightarrow\left(x+1\right)^2-5x\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+1-5x\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(-4x+1\right)=0\)

\(\Leftrightarrow-\left(x+1\right)\left(4x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\4x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\4x=1\Leftrightarrow x=\frac{1}{4}\end{cases}}}\)

Vậy...

11 tháng 11 2018

Nếu sai đề làm mệt lắm.

11 tháng 11 2018

đó là mk nghĩ thui mà

9 tháng 1 2018

a ) \(A=\left(3x+7\right)\left(2x+3\right)-\left(3x-5\right)\left(2x+11\right)\)

\(A=6x^2+9x+14x+21-6x^2-33x+10x+55\)

\(A=76\)

Vậy ........

\(B=\left(x^2-2\right)\left(x^2+x+1\right)-x\left(x^3+x^2-3x-2\right)\)

\(B=x^4+x^3+x^2-2x^2-2x-2-x^4-x^3+3x^2+2x=-2\)

Vậy.........

\(D=x\left(2x+1\right)-x^2\left(x+2\right)+x^3-x+3\)

\(D=2x^2+x-x^3-2x^2+x^3-x+3=3\)

Vậy ......

\(E=\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\)

\(E=x^3+1-x^3+1=2\)

Vậy ..........

9 tháng 1 2018

\(a,A=\left(3x+7\right)\left(2x+3\right)-\left(3x-5\right)\left(2x+11\right)\)

\(=6x^2+9x+14x+21-6x^2-33x+10x+55\)

\(=76\)

Vậy biểu thức A không phụ thuộc vào biến

\(b,B=\left(x^2-2\right)\left(x^2+x-1\right)-x\left(x^3+x^2-3x-2\right)\)

\(=x^4+x^3-x^2-2x^2-2x+2-x^4-x^3+3x^2+2x\)

\(=2\)

Vậy biểu thức B không phụ thuộc vào biến

\(c,D=x\left(2x+1\right)-x^2\left(x+2\right)+x^3-x+3\)

\(=2x^2+x-x^3-2x^2+x^3-x+3\)

\(=3\)

Vậy biểu thức D không phụ thuộc vào biến

\(d,E=\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\)

\(=x^3+1-x^3+1\)

\(=2\)

Vậy biểu thức E không phụ thuộc vào biến

 

a: Đặt \(C=3\left(x-1\right)^2-\left(x+1\right)^2+2\left(x-3\right)\left(x+3\right)-\left(2x+3\right)^2-\left(5-20x\right)\)

\(D=5x\left(x-7\right)\left(x+7\right)-x\left(2x-1\right)^2-\left(x^3+4x^2-246x\right)-175\)

Do đó: A=C+D

\(C=3\left(x-1\right)^2-\left(x+1\right)^2+2\left(x-3\right)\left(x+3\right)-\left(2x+3\right)^2-\left(5-20x\right)\)

\(=3x^2-6x+3-x^2-2x-1+2x^2-18-\left(4x^2+12x+9\right)-5+20x\)

\(=4x^2-8x-16-4x^2-12x-9-5+20x\)

\(=-30\)

\(D=5x\left(x-7\right)\left(x+7\right)-x\left(2x-1\right)^2-\left(x^3+4x^2-246x\right)-175\)

\(=5x\left(x^2-49\right)-x\left(4x^2-4x+1\right)-x^3-4x^2+246x-175\)

\(=5x^3-245x-4x^3+4x^2-x-x^3-4x^2+246x-175\)

=-175

A=C+D=-30-175=-205

b: Đặt \(E=-2x\left(3x+2\right)^2+\left(4x+1\right)^2+2\left(x^3+8x^2+3x-2\right)-\left(5-x\right)\)

\(F=\left(5x-2\right)^2-\left(6x+1\right)^2+11\left(x-2\right)\left(x+2\right)-16\left(3-2x\right)\)

Do đó: B=E+F

\(E=-2x\left(3x+2\right)^2+\left(4x+1\right)^2+2\left(x^3+8x^2+3x-2\right)-\left(5-x\right)\)

\(=-2x\left(9x^2+12x+4\right)+16x^2+8x+1+2x^3+16x^2+6x-4-5+x\)

\(=-18x^3-24x^2-8x+32x^2+14x+1-5+x\)

\(=-18x^3+8x^2+7x-4\)

\(F=\left(5x-2\right)^2-\left(6x+1\right)^2+11\left(x-2\right)\left(x+2\right)-16\left(3-2x\right)\)

\(=25x^2-20x+4-36x^2-12x-1+11x^2-44-48+32x\)

\(=-95\)

\(B=-18x^3+8x^2+7x-99\)