\(\frac{n}{n+1}\)( n thuộc N )

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2018

a) Gọi d là ƯCLN(n, n + 1), d ∈ N*

\(\Rightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)

\(\Rightarrow\left(n+1\right)-n⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(n,n+1\right)=1\)

\(\Rightarrow\) \(\frac{n}{n+1}\) là phân số tối giản.

b) Gọi d là ƯCLN(n + 1, 2n + 3), d ∈ N*

\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}}\)

\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(n+1,2n+3\right)=1\)

\(\Rightarrow\) \(\frac{n+1}{2n+3}\) là phân số tối giản.

31 tháng 1 2018

c) Gọi d là ƯCLN(21n + 4, 14n + 3), d ∈ N*

\(\Rightarrow\hept{\begin{cases}21n+4⋮d\\14n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(21n+4\right)⋮d\\3\left(14n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n+8⋮d\\42n+9⋮d\end{cases}}}\)

\(\Rightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(21n+4,14n+3\right)=1\)

\(\Rightarrow\) \(\frac{21n+4}{14n+3}\) là phân số tối giản.

d) Gọi d là ƯCLN(2n + 3, 3n + 5), d ∈ N*

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}}}\)

\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(2n+3,3n+5\right)=1\)

\(\Rightarrow\) \(\frac{2n+3}{3n+5}\) là phân số tối giản.

31 tháng 1 2018

a) goi ƯCLN(n,n+1) là d

ta co : n ⋮ d ; n+1 ⋮d (1)

⇒ (n+1)-n ⋮ d

⇒1 ⋮ d (2)

Từ (1) và (2) ⇒ d = 1 hoac -1

Vậy \(\dfrac{n}{n+1}\) là phân số tối giản.

31 tháng 1 2018

b) goi UCLN (n+1,2n+3)la d

=>(2n+3) - (n+1)⋮d

=>(2n+3) - [ 2(n+1)] ⋮ d

=>(2n+3)-(2n+2)⋮d

=>2n+3-2n-2 ⋮ d

=>1 ⋮ d => d=1

vay \(\dfrac{n+1}{2n+3}\) là phân số tối giản.

19 tháng 8 2020

a) Gọi ƯCLN(n + 1 ; 2n + 3) = d

=> \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

=> n + 1 ; 2n + 3 là 2 số nguyên tố cùng nhau 

=> \(\frac{n+1}{2n+3}\)là phân số tối giản

b) Gọi ƯCLN (2n + 1 ; 3n + 2) = d

=> \(\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}\Rightarrow6n+4-\left(6n+3\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

=> 2n + 1 ; 3n + 2 là 2 số nguyên tố cùng nhau

=> \(\frac{2n+1}{3n+2}\)là phân số tối giản

c) Gọi ƯCLN(14n + 3; 21n + 5) = d

Ta có : \(\hept{\begin{cases}14n+3⋮d\\21n+5⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(14n+3\right)⋮d\\2\left(21n+5\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}42n+9⋮d\\42n+10⋮d\end{cases}}\Rightarrow\left(42n+10\right)-\left(42n+9\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

=> 14n + 3 ; 21n + 5 là 2 số nguyên tố cùng nhau

=> \(\frac{14n+3}{21n+5}\) là phân số tối giản

d) Gọi ƯCLN(25n + 7 ; 15n + 4) = d

=> \(\hept{\begin{cases}25n+7⋮d\\15n+4⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6\left(25n+7\right)⋮d\\10\left(15n+4\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}150n+42⋮d\\150n+40⋮d\end{cases}}\Rightarrow\left(150n+42\right)-\left(150n+40\right)⋮d\Rightarrow2⋮d\)

=> \(d\in\left\{1;2\right\}\)

Nếu n lẻ => 2n + 7 chẵn ; 15n + 4 lẻ 

=> ƯCLN(2n + 7 ; 5n + 4) = 1

Nếu n chẵn => 25n + 7 lẻ  ; 15n + 4 chẵn

=> ƯCLN(2n + 1 ; 15n + 4) = 1

=> d khái 2 <=> d = 1

=> \(\frac{2n+7}{15n+4}\)là phân số tối giản

5 tháng 1 2018

a, \(\frac{3n}{3n+1}\) 

Vì 3n + 1 hơn 3n 1 đơn vị, n \(\in\) Z 

\(\Rightarrow\) ƯCLN ( 3n; 3n + 1 ) = 1

\(\Rightarrow\frac{3n}{3n+1}\) là phân số tối giản

Vậy \(\frac{3n}{3n+1}\) là phân số tối giản ( đpcm )

b, \(\frac{4n+1}{6n+1}=\frac{24n+6}{24n+4}\)

Đề bài sai

Các câu c,d,e,g,h tương tự

5 tháng 1 2018

Các phân số đó tối giản khi UWCLN của tử và mẫu của nó bằng 1 

Vậy bạn hãy chứng minh UWCLN(tử,mẫu)=1

17 tháng 1 2018

Mk làm mẫu cho 1 phần rùi các câu còn lại làm tương tự nhé

a)    \(\frac{3n-2}{n-3}=3+\frac{7}{n-3}\)

Để   \(\frac{3n-2}{n-3}\)nguyên  thì   \(\frac{7}{n-3}\)nguyên

hay     \(n-3\)\(\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Ta lập bảng sau:

\(n-3\)     \(-7\)               \(-1\)                   \(1\)                    \(7\)

\(n\)              \(-4\)                  \(2\)                    \(4\)                   \(10\)

Vậy....

14 tháng 2 2016

1. goi UCLN ( n + 1; 2n + 3 ) la d ( d thuoc N ), ta co:

*n + 1 chia het cho d

*2n + 3 chia hết cho d

suy ra:

*( n + 1 ) x 2 chia het cho d

*2n + 3 chia hết cho d

suy ra:

*2n + 2 chia hết cho d

*2n + 3 chia hết cho d

suy ra:

*( 2n + 3 ) - (2n + 2 ) chia het cho d

suy ra:

1 chia hết cho d, vì d thuộc N suy ra: d=1

suy ra : UCLN( n + 1; 2n + 3 ) = 1

suy ra : n + 1 trên 2n + 3 toi gian

các câu sau cứ thế mà lm...............