Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) goi ƯCLN(n,n+1) là d
ta co : n ⋮ d ; n+1 ⋮d (1)
⇒ (n+1)-n ⋮ d
⇒1 ⋮ d (2)
Từ (1) và (2) ⇒ d = 1 hoac -1
Vậy \(\dfrac{n}{n+1}\) là phân số tối giản.
b) goi UCLN (n+1,2n+3)la d
=>(2n+3) - (n+1)⋮d
=>(2n+3) - [ 2(n+1)] ⋮ d
=>(2n+3)-(2n+2)⋮d
=>2n+3-2n-2 ⋮ d
=>1 ⋮ d => d=1
vay \(\dfrac{n+1}{2n+3}\) là phân số tối giản.
a) Gọi ƯCLN(n + 1 ; 2n + 3) = d
=> \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
=> n + 1 ; 2n + 3 là 2 số nguyên tố cùng nhau
=> \(\frac{n+1}{2n+3}\)là phân số tối giản
b) Gọi ƯCLN (2n + 1 ; 3n + 2) = d
=> \(\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}\Rightarrow6n+4-\left(6n+3\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
=> 2n + 1 ; 3n + 2 là 2 số nguyên tố cùng nhau
=> \(\frac{2n+1}{3n+2}\)là phân số tối giản
c) Gọi ƯCLN(14n + 3; 21n + 5) = d
Ta có : \(\hept{\begin{cases}14n+3⋮d\\21n+5⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(14n+3\right)⋮d\\2\left(21n+5\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}42n+9⋮d\\42n+10⋮d\end{cases}}\Rightarrow\left(42n+10\right)-\left(42n+9\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
=> 14n + 3 ; 21n + 5 là 2 số nguyên tố cùng nhau
=> \(\frac{14n+3}{21n+5}\) là phân số tối giản
d) Gọi ƯCLN(25n + 7 ; 15n + 4) = d
=> \(\hept{\begin{cases}25n+7⋮d\\15n+4⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6\left(25n+7\right)⋮d\\10\left(15n+4\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}150n+42⋮d\\150n+40⋮d\end{cases}}\Rightarrow\left(150n+42\right)-\left(150n+40\right)⋮d\Rightarrow2⋮d\)
=> \(d\in\left\{1;2\right\}\)
Nếu n lẻ => 2n + 7 chẵn ; 15n + 4 lẻ
=> ƯCLN(2n + 7 ; 5n + 4) = 1
Nếu n chẵn => 25n + 7 lẻ ; 15n + 4 chẵn
=> ƯCLN(2n + 1 ; 15n + 4) = 1
=> d khái 2 <=> d = 1
=> \(\frac{2n+7}{15n+4}\)là phân số tối giản
a, \(\frac{3n}{3n+1}\)
Vì 3n + 1 hơn 3n 1 đơn vị, n \(\in\) Z
\(\Rightarrow\) ƯCLN ( 3n; 3n + 1 ) = 1
\(\Rightarrow\frac{3n}{3n+1}\) là phân số tối giản
Vậy \(\frac{3n}{3n+1}\) là phân số tối giản ( đpcm )
b, \(\frac{4n+1}{6n+1}=\frac{24n+6}{24n+4}\)
Đề bài sai
Các câu c,d,e,g,h tương tự
Các phân số đó tối giản khi UWCLN của tử và mẫu của nó bằng 1
Vậy bạn hãy chứng minh UWCLN(tử,mẫu)=1
Mk làm mẫu cho 1 phần rùi các câu còn lại làm tương tự nhé
a) \(\frac{3n-2}{n-3}=3+\frac{7}{n-3}\)
Để \(\frac{3n-2}{n-3}\)nguyên thì \(\frac{7}{n-3}\)nguyên
hay \(n-3\)\(\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta lập bảng sau:
\(n-3\) \(-7\) \(-1\) \(1\) \(7\)
\(n\) \(-4\) \(2\) \(4\) \(10\)
Vậy....
1. goi UCLN ( n + 1; 2n + 3 ) la d ( d thuoc N ), ta co:
*n + 1 chia het cho d
*2n + 3 chia hết cho d
suy ra:
*( n + 1 ) x 2 chia het cho d
*2n + 3 chia hết cho d
suy ra:
*2n + 2 chia hết cho d
*2n + 3 chia hết cho d
suy ra:
*( 2n + 3 ) - (2n + 2 ) chia het cho d
suy ra:
1 chia hết cho d, vì d thuộc N suy ra: d=1
suy ra : UCLN( n + 1; 2n + 3 ) = 1
suy ra : n + 1 trên 2n + 3 toi gian
các câu sau cứ thế mà lm...............
a) Gọi d là ƯCLN(n, n + 1), d ∈ N*
\(\Rightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)
\(\Rightarrow\left(n+1\right)-n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(n,n+1\right)=1\)
\(\Rightarrow\) \(\frac{n}{n+1}\) là phân số tối giản.
b) Gọi d là ƯCLN(n + 1, 2n + 3), d ∈ N*
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}}\)
\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(n+1,2n+3\right)=1\)
\(\Rightarrow\) \(\frac{n+1}{2n+3}\) là phân số tối giản.
c) Gọi d là ƯCLN(21n + 4, 14n + 3), d ∈ N*
\(\Rightarrow\hept{\begin{cases}21n+4⋮d\\14n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(21n+4\right)⋮d\\3\left(14n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n+8⋮d\\42n+9⋮d\end{cases}}}\)
\(\Rightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(21n+4,14n+3\right)=1\)
\(\Rightarrow\) \(\frac{21n+4}{14n+3}\) là phân số tối giản.
d) Gọi d là ƯCLN(2n + 3, 3n + 5), d ∈ N*
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+3,3n+5\right)=1\)
\(\Rightarrow\) \(\frac{2n+3}{3n+5}\) là phân số tối giản.