Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
=>ΔADE cân tại A
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB=góc KAC
=>ΔAHB=ΔAKC
=>AH=AK
Xét ΔADE có AH/AD=AK/AE
nên HK//DE
c:
góc HBD+góc D=90 độ
góc KCE+góc E=90 độ
mà góc D=góc E
nên góc HBD=góc KCE
góc MBC=góc HBD
góc MCB=góc KCE
mà góc HBD=góc KCE
nên góc MBC=góc MCB
=>ΔMBC cân tại M
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
Câu hỏi của Bảo Châu Trần - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo lời giải tại đây nhé.
Do AO là đường trung tuyến của tam giác ABC :
=) OB=OC =) O là trung điểm của BC
Và OD=OA =) O là trung điểm của AD
=) 2 đường chéo AD và BC cắt nhau tại trung điểm O
=) Tứ giác ABDC là hình bình hành (1)
Do AB \(\perp\)AC tại A =) \(\widehat{BAC}\)= 900 (2)
Từ (1) và (2) =) ABDC là hình chữ nhật
b) Do BH\(\perp\)AD
CK\(\perp\)AD
=) BH // CK (*)
Do BD // AC
=) \(\widehat{DAC}\)=\(\widehat{B\text{D}A}\)(2 góc so le trong)
Xét tam giác AKC ( \(\widehat{AKC}\)= 900) và tam giác DHB (\(\widehat{DHB}\)= 900) có :
AC=BD (tính chất hính chữ nhật)
\(\widehat{DAC}\)=\(\widehat{B\text{D}A}\)( chứng minh trên )
=) Tam giác AKC= Tam giác DHB ( cạch huyền - góc nhọn )
CK=BH (2 cạch tương ứng ) (**)
Tứ (*) và (**) =) Tứ giác BHCK là hình bình hành
=) BK // CH
Ta có góc ABE bằng góc ACI vì cùng phụ với góc AEB
\(\Delta ABE=\Delta ACI\left(g.c.g\right)\) \(\Rightarrow\hept{\begin{cases}BE=CI\\AE=AI\end{cases}\Rightarrow AI=AD\left(=AE\right)}\) Suy ra A là trung điểm của DI
Mà AN sng song DM song song CI nên theo địnhlí về đường trung bình của hình thang suy ra MN=NC
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC
hay BMNC là hình thang
b: Xét ΔABK có MI//BK
nên MI/BK=AM/AB=1/2(1)
XétΔACK có NI//CK
nên NI/CK=AN/AC=1/2(2)
Từ (1)và (2) suy ra MI/BK=NI/CK
mà MI=NI
nên BK=CK
hay K là trug điểm của BC
Xét ΔABC có
K là trung điểm của BC
M là trung điểm của AB
Do đó: KM là đường trung bình
=>KM//AN và KM=AN
hay AMKN là hình bình hành
1:
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
b: Xét ΔHBD vuông tại H và ΔKCE vuông tại K có
BD=CE
góc HDB=góc KEC
=>ΔHBD=ΔKCE
=>HB=KC
c: góc HBD=góc KCE
=>góc OBC=góc OCB
=>ΔOBC cân tại O
Cảm ơn bạn đã giải giúp mik bài tập này ạ.