K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2017

\(A=x^2+3xy+6x+5y^2+7y-2\)

\(=\left[x^2+2x\left(3+\dfrac{3}{2}y\right)+\left(3+\dfrac{3}{2}y\right)^2\right]+5y^2+7y-2-\left(3+\dfrac{3}{2}y\right)^2\)\(=\left(x+3+\dfrac{3}{2}y\right)^2+5y^2+7y-2-9-9y-\dfrac{9}{4}y^2\)\(=\left(x+3+\dfrac{3}{2}y\right)^2+\dfrac{11}{4}y^2-2y-11\)

\(=\left(x+3+\dfrac{3}{2}\right)^2+\dfrac{11}{4}\left(y^2-\dfrac{8}{11}y+\dfrac{16}{121}\right)-\dfrac{125}{11}\)\(=\left(x+3+\dfrac{3}{2}y\right)^2+\dfrac{11}{4}\left(x-\dfrac{4}{11}\right)^2-\dfrac{125}{11}\ge\dfrac{-125}{11}\)Vậy \(Min_A=\dfrac{-125}{11}\) khi \(\left[{}\begin{matrix}x+3+\dfrac{3}{2}y=0\\x-\dfrac{4}{11}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{74}{33}\\x=\dfrac{4}{11}\end{matrix}\right.\)

Biết số nhọ nhưng vẫn làm tiếp:)

2 tháng 7 2017

\(2,x^4+3x^2+2x+2=\left(x^4+2x^2+1\right)+\left(x^2+2x+1\right)=\left(x^2+1\right)^2+\left(x+1\right)^2>0\left(đpcm\right)\)

\(b,x^2+y^2+z^2+xy+yz+zx\ge0\)

\(\Leftrightarrow2\left(x^2+y^2+z^2+xy+yz+zx\right)\ge0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2+2xz+z^2\right)+\left(y^2+2yz+z^2\right)\ge0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x+z\right)^2+\left(y+z\right)^2\ge0\)

Đúng với mọi x , y ,z

c,\(x^2+y^2+xy+x+y+1\ge0\)

\(\Leftrightarrow2\left(x^2+y^2+xy+y+x+1\right)\ge0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2+2x+1\right)+\left(y^2+2y+1\right)\ge0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2\ge0\)

Đúng với mọi x , y

1 tháng 10 2020

\(a,\)\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)\(\Leftrightarrow14+2\left(ab+bc+ac\right)=0\)\(\Rightarrow\left(ab+bc+ac\right)^2=49\)\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=49\)\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2=49\)
Ta có: \(a^2+b^2+c^2=14\Rightarrow\left(a^2+b^2+c^2\right)=196\)\(\Leftrightarrow a^{^{ }4}+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)=196\)\(\Leftrightarrow\)\(a^4+b^4+c^4=98\)

16 tháng 3 2019

1 ) Đề bài > not \(\ge\)

Giả sử đpcm là đúng , khi đó , ta có :

\(x^2+y^2+8>xy+2x+2y\)

\(\Leftrightarrow2x^2+2y^2+16>2xy+4x+4y\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-4x+4\right)+\left(y^2-4y+4\right)+8>0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2+8>0\left(1\right)\)

Do \(\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2+8\ge8>0\forall x;y\left(2\right)\)

Từ ( 1 ) ; ( 2 ) => Điều giả sử là đúng => đpcm

2 ) ĐK : a ; b ; c không âm

Áp dụng BĐT phụ \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\) ( cái này bạn áp dụng BĐT Cô - si để c/m ) , ta có :

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{9}{a+b+b+c+c+a}=\frac{9}{6.2}=\frac{3}{4}\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c=2\)

3 ) Áp dụng BĐT Cô - si cho các cặp số không âm , ta có :

\(x^2+y^2\ge2xy;y^2+z^2\ge2yz;x^2+z^2\ge2xz\)

\(\Rightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2xz\left(1\right)\)

\(x^2+1\ge2x;y^2+1\ge2y;z^2+1\ge2z\)

\(\Rightarrow x^2+y^2+z^2+3\ge2x+2y+2z\left(2\right)\)

Từ ( 1 ) ; ( 2 ) , ta có : \(2x^2+2y^2+2z^2+x^2+y^2+z^2+3\ge2xy+2yz+2xz+2x+2y+2z\)

\(\Rightarrow3\left(x^2+y^2+z^2+1\right)\ge2\left(x+y+z+2xy+2xz+2yz\right)=2.6=12\)

\(\Rightarrow x^2+y^2+z^2+1\ge4\)

\(\Rightarrow x^2+y^2+z^2\ge3\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=z=1\)

Bài 3: 

Gọi bốn số nguyên dương liên tiếp là x,x+1,x+2,x+3

Theo đề, ta có: \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=120\)

\(\Leftrightarrow\left(x^2+3x\right)\left(x^2+3x+2\right)=120\)

\(\Leftrightarrow\left(x^2+3x\right)^2+2\left(x^2+3x\right)-120=0\)

\(\Leftrightarrow\left(x^2+3x\right)^2+12\left(x^2+3x\right)-10\left(x^2+3x\right)-120=0\)

\(\Leftrightarrow\left(x^2+3x+12\right)\left(x^2+3x-10\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)

mà x là số nguyên dương

nên x=2

Vậy: Bốn số cần tìm là 2;3;4;5

3 tháng 7 2017

Ta có :

\(M=x^4+y^4+z^4=\left(x^4+\frac{1}{9}\right)+\left(y^4+\frac{1}{9}\right)+\left(z^4+\frac{1}{9}\right)-\frac{1}{3}\)

Áp dụng BĐT \(a^2+b^2\ge2ab\) ( "=" khi a=b ) , ta có :

\(M\ge\frac{2}{3}x^2+\frac{2}{3}y^2+\frac{2}{3}z^2-\frac{1}{3}\)

\(\Rightarrow M\ge\frac{1}{3}\left(2x^2+2y^2+2z^2\right)-\frac{1}{3}\)

\(\Rightarrow M\ge\frac{1}{3}\left[\left(x^2+y^2\right)+\left(y^2+z^2\right)+\left(x^2+z^2\right)\right]-\frac{1}{3}\)

\(\Rightarrow M\ge\frac{2}{3}.\left(xy+yz+xz\right)-\frac{1}{3}=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}\) ( Vì xy+yz+xz=1 )

Dấu "=" xảy ra khi  \(x=y=z=\frac{1}{\sqrt{3}}\)

                 Vậy \(GTNN_M=\frac{1}{3}\) khi  \(x=y=z=\frac{1}{\sqrt{3}}\)

( Ko bít đúng Ko )    :)

5 tháng 7 2017

cảm ơn nha

25 tháng 11 2016

1, mk nhớ k lầm thì mk  đã từng làm cho bn rồi ,kq=1/2

2,Dễ CM \(x^2+y^2+z^2\ge xy+yz+xz\) ,dấu "=" xảy ra <=>x=y=z

\(=>\left(x+y+z\right)^2\ge\left(xy+yz+xz\right)+2\left(xy+yz+xz\right)=3\left(xy+yz+xz\right)\)

\(=>9\ge3\left(xy+yz+xz\right)=>xy+yz+xz\le\frac{9}{3}=3\)

=>GTLN của xy+yz+xz=3

3)x3+y3+z3=3xyz

<=>x3+y3+z3-3xyz=0

<=>(x+y+z)(x2+y2+z2-xy-yz-xz)=0

<=>x+y+z=0 hoặc x2+y2+z2-xy-yz-xz=0

(+)x+y+z=0 thì x+y=-z;y+z=-x;x+z=-y

thế vô P =-1

(+)x2+y2+z2-xy-yz-xz=0

TH này thì x=y=z

thế vô P=2

10 tháng 8 2017

hi kết bạn nha