K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 8: Cho hình bình hành ABCD. Gọi M, N lần lượt là trung điểm của AD và BC, có bao nhiêu vectơ bằng với DM từ các điểm đã cho? A. 3. B. 4. C. 5. D. Câu 9: Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chọn khẳng định đúng trong các khẳng định sau.A. AD BC  . B. MQ PN  . C. MN QP  . D. AB DC  .Câu 10: Cho tam giác ABC với trực tâm H, D là điểm đối xứng với B qua tâm O...
Đọc tiếp

Câu 8: Cho hình bình hành ABCD. Gọi M, N lần lượt là trung điểm của AD và BC, có bao nhiêu vectơ bằng với DM từ các điểm đã cho? A. 3. B. 4. C. 5. D. Câu 9: Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chọn khẳng định đúng trong các khẳng định sau.

A. AD BC  . B. MQ PN  . C. MN QP  . D. AB DC  .

Câu 10: Cho tam giác ABC với trực tâm H, D là điểm đối xứng với B qua tâm O của đường tròn ngoại tiếp tam giác ABC. Khẳng định nào sau đây là đúng

A. HA CD  và AD CH  .

B. HA CD  và DA HC  .

C. HA CD  và AD HC  .

D. HA CD  và AD HC  và OB OD  .

Câu 1: Cho ABCD là hình vuông cạnh bằng 1. Khi đó độ dài của AC bằng

A. 1. B. 2. C. 2. D. 3.

Câu 2: Cho tam giác ABC vuông tại C có cạnh AC cm BC cm   4 , 3 . Độ dài của vectơ AB là

A. 7 . cm B. 6 . cm C. 5 . cm D. 4 . cm

Câu 3: Cho hình vuông ABCD tâm O, cạnh 2a. Độ dài vectơ DO bằng

A. 2 2. a B. 2 . 2 a C. a 2. D. 2 2. a

Câu 4: Cho đoạn thẳng AB cm 10 , điểm C thỏa mãn AC CB  . Độ dài vectơ AC là

A. 10 . cm B. 5 . cm C. 20 . cm D. 15 . c

0
12 tháng 5 2017

a)
A B C D M N P Q
Kẻ BD.
Trong tam giác ABD có MQ là đường trung bình nên MQ//BD và \(MQ=\dfrac{1}{2}BD\). (1)
Trong tam giác CBD có PN là đường trung bình nên PN//BD và \(NP=\dfrac{1}{2}BD\). (2)
Từ (1) và (2) suy ra: \(\overrightarrow{MQ}=\overrightarrow{NP}\).
Kẻ AC.
A B C D M N P Q
Trong tam giác ABC có MN là đường trung bình suy ra:
NM//CA và \(NM=\dfrac{1}{2}CA\). (3)
Trong tam giác DAC có PQ là đường trung bình nên:
PQ//AC và \(PQ=\dfrac{1}{2}CA\). (4)
Từ (3) và (4) suy ra: \(\overrightarrow{PQ}=\overrightarrow{NM}\).

2 tháng 9 2021
xét tam giác ABD có:
M là trung điểm AB
Q là trung điểm AD
suy ra MQ là đường trung bình của tam giác ABD
suy ra MQ // BD, MQ = 1/2.BD (1)
xét tam giác BCD có:
N là trung điểm BC
P là trung điểm DC
suy ra NP là đường trung bình của tam giác BCD
suy ra NP//BD, NP = 1/2.BD (2)
từ (1), (2) suy ra NP//MQ và NP = MQ
suy ra vecto NP = MQ
chứng minh tương tự trên thì ta cũng được vecto NM = PQ
NV
2 tháng 9 2021

Ta có M là trung điểm AB, N là trung điểm BC

\(\Rightarrow\) MN là đường trung bình tam giác ABC

\(\Rightarrow\overrightarrow{MN}=\dfrac{1}{2}\overrightarrow{AC}\)

Hoàn toàn tương tự, PQ là đường trung bình tam giác ACD

\(\Rightarrow\overrightarrow{QP}=\dfrac{1}{2}\overrightarrow{AC}\)

\(\Rightarrow\overrightarrow{MN}=\overrightarrow{QP}\)

AH
Akai Haruma
Giáo viên
12 tháng 8 2021

Lời giải:
Xét tam giác $ABD$ có $MQ$ là đường trung bình ứng với cạnh $BD$

$\Rightarrow QM\parallel DB, \overline{MQ}=\frac{1}{2}\overline{BD}$

$\Rightarrow \overrightarrow{MQ}=\frac{1}{2}\overrightarrow{BD}(*)$

Tương tự:

$\overrightarrow{NP}=\frac{1}{2}\overrightarrow{BD}(**)$

Từ $(*); (**)\Rightarrow \overrightarrow{NP}=\overrightarrow{MQ}$

Việc cm $\overrightarrow{PQ}=\overrightarrow{NM}$ tương tự.

 

AH
Akai Haruma
Giáo viên
12 tháng 8 2021

Hình vẽ:

17 tháng 5 2017

A B C D M N Q P
a)
MN là đường trung bình của tam giác ABC nên \(\overrightarrow{MN}=\dfrac{1}{2}\overrightarrow{AC}\).
QP là đường trung bình của tam giác ABC nên \(\overrightarrow{QP}=\dfrac{1}{2}\overrightarrow{AC}\).
Vậy \(\overrightarrow{MN}=\overrightarrow{QP}\).
b) Giả sử:
\(\overrightarrow{MP}=\overrightarrow{MN}+\overrightarrow{MQ}\Leftrightarrow\overrightarrow{MP}-\overrightarrow{MN}-\overrightarrow{MQ}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{MP}+\overrightarrow{NM}+\overrightarrow{QM}=\overrightarrow{0}\)
\(\Leftrightarrow\left(\overrightarrow{QM}+\overrightarrow{MP}\right)+\overrightarrow{NM}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{QP}+\overrightarrow{NM}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{QP}-\overrightarrow{MN}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{QP}-\overrightarrow{QP}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{0}=\overrightarrow{0}\) ( Điều giả sử đúng).
Vậy \(\overrightarrow{MP}=\overrightarrow{MN}+\overrightarrow{MQ}.\)

16 tháng 9 2016

bài 1

a CO-OB=BA

<=.> CO = BA +OB

<=> CO=OA ( LUÔN ĐÚNG )=>ĐPCM

b AB-BC=DB

<=> AB=DB+BC

<=> AB=DC(LUÔN ĐÚNG )=> ĐPCM

Cc DA-DB=OD-OC

<=> DA+BD= OD+CO

<=> BA= CD (LUÔN ĐÚNG )=> ĐPCM

d DA-DB+DC=0

VT= DA +BD+DC

= BA+DC

Mà BA=CD(CMT)

=> VT= CD+DC=O

 

16 tháng 9 2016

BÀI 2

AC=AB+BC

BD=BA+AD

=> AC+BD= AB+BC+BA+AD=BC+AD (đpcm)