Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
Xét ΔCBD có CD=CB
nên ΔCBD cân tại C
Suy ra: \(\widehat{CDB}=\widehat{CBD}\)
mà \(\widehat{CDB}=\widehat{ADB}\)
nên \(\widehat{ADB}=\widehat{DBC}\)
mà hai góc này ở vị trí so le trong
nên AD//BC
hay ADCB là hình thang
Bài mình làm cực chi tiết nên có một số chỗ viết tắt: gt:giả thiết, dhnb:dấu hiệu nhận biết, đ/n:định nghĩa, cmt:chứng minh trên, t/c: tính chất
3. a) Vì tam giác ABC vuông cân ở A (gt)=> góc ACB=45 độ.
tam giác ACE vuông cân ở E (gt)=> góc EAC=45 độ.
mà góc EAC và góc ACB ở vị trí so le trong.
Từ 3 điều trên=> AE//BC (dhnb) => AECB là hình thang (đ/n) mà góc AEC=90 độ (tam giác ACE vuông cân) => AECB là hình thang vuông.
b) Vì AECB là hình thàng vuông(cmt) mà góc AEC= 90 độ (tam giác ACE vuông cân). => góc ACE=90 độ.
Có: góc ABC= 45 độ (cmt).
tam giác AEC vuông cân ở E (gt)=> góc EAC=45 độ (t/c) mà góc BAC+ góc EAC= góc BAE và góc BAC= 90 độ (tam giác BAC vuông cân)=> góc BAE= 90 độ=45 độ= 135 độ.
Gọi AD là đường trung trực tam giác ABC=> AD=BD=BC=1/2BC=1/2*2=1 cm (chỗ này là tính chất tam giác vuông: trung tuyến ứng với cạnh huyền thì bằng nửa cạnh huyền nhé). [đây là điều thứ nhất suy ra được]
=> AD vông góc với BC. [đây là điều thứu hai suy ra được]
Xét tam giác ADC vuông tại D (AD vuông góc BC) và tam giác AEC vuông tại E (gt) có: Cạnh huyền AC chung. Góc EAC= góc BCA (cmt) => tam giác ADC= tam giác CEA (ch-gn) => AD= EC ( 2 cạnh tương ứng) mà AD=1cm(cmt) => AE=1cm.
Xét tam giác ADB vuông (AD vuông góc BC) có: AD2+ BD2 = AB2 ( định lí Pytago)
12 + 12 =AB2 => 1+1=AB2 => Ab bằng căn bậc hai cm.
Bài 1:
a.
AB // CD
=> A + D = 1800 (2 góc trong cùng phía)
=> A = 1800 - D = 1800 - 540 = 1260
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
=> B = 1800 - C = 1800 - 1050 = 750
b.
AB // CD
=> A + D = 1800 (2 góc trong cùng phía)
=> A = (1800 - 320) : 2 = 740
=> D = 1800 - 740 = 1060
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
=> B = 1800 : (1 + 2) . 2 = 1200
=> C = 1800 - 1200 = 600
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
a, Ta có:
\(\widehat{ADC}+\widehat{ABC}=180^o\left(1\right)\)
\(\widehat{ADC}+\widehat{EDC}=180^o\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\widehat{ABC}=\widehat{EDC}\) (Cùng bù \(\widehat{ADC}\))
Ta xét hai tam giác ABC và EDC:
BC = DC (giả thiết)
AB = DE (giả thiết)
\(\widehat{ABC}=\widehat{EDC}\) (chứng minh trên)
\(\Rightarrow\Delta ABC=\Delta DEC\left(c.g.c\right)\)
b) Ta có: Tam giác ABC = tam giác EDC (chứng minh trên)
=> AC = EC (Hai cạnh tương ứng bằng nhau)
=> Tam giác AEC cân tại A
\(\Rightarrow\widehat{CAE}=\widehat{CEA}\left(3\right)\)
Ta có: \(\widehat{CEA}=\widehat{CAB}\left(4\right)\)
Từ (3) và (4) \(\Rightarrow\widehat{CAE}=\widehat{CAB}\)
=> AC là tia phân giác của \(\widehat{DAB}\)
B C E D A
Bài 4:
Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
góc D=góc C
Do đó: ΔAED=ΔBFC
=>DE=CF
Bài 3:
a: Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
=>góc ACD=góc BDC
b: Ta co: góc ACD=góc BDC
=>góc EAB=góc EBA
=>ΔEAB cân tại E
Bạn tự vẽ hình nhé!
a, (Mk nghĩ đề là góc B+D=180o)
Xét tam giác ABC và EDC có:
AB=DE (gt)
DC=BC (gt)
góc EDC=ABC = (180o- ADC)
=> tam giác ABC=EDC (c.g.c)
b, Tam giác ABC=EDC => AC=EC
=> tam giác ACE cân tại C=> góc DAC=DEC (1)
Mặt khác hai tam giác trên bằng nhau => góc DEC=BAC (2)
Từ (1) và (2) => góc DAC=BAC
=> AC là pg góc A
Bài 1:
a,xét tam giác ABC và tam giác EDC có:
AB=DE(gt)
DC=DC(gt)
góc EDC=ABC=(180 độ-ADC)
=>tam giác ABC=EDC(c.g.c)
b,tam giác ABC=EDC
=.AC=EC
=>tam giác ACE cân tại C
=> góc DAC=DEC(1)
Mặt khác 2 tam giác trên bằng nhau
=>DAC=DEC(2)
Từ (1) và (2)=>DAC=BAC
=> góc AC là tia pg của A
---------------------------đợi mik nghiên cứu bài 2 đã chà nha học tốt---------------------------------
AB//CD=>A+B=180 độ (hai góc trong cùng phía)(1)
A-D=20 độ(2)
Lấy (1)+(2)=>A+D+A-D=180 độ +20=> 2A=200=>A=100 độ
A+B=180 độ=>D=180 độ=>D=180 -A=180-100=80 độ
AB//CD>B+C=180 độ (hai góc trong cùng phía)
Hay AC+C=180 độ=>3C=180 độ =>C=60 độ
B+C=180 độ=>B=180 -C=180-60=120 độ
--------------------------------------------học tốt-------------------------------