Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình xin làm câu Vi-et thôi.
2/ \(2x^2-2mx-m-5=0\left(1\right)\)
a/ ( a = 2; b = -2m; c = -m - 5 )
\(\Delta=b^2-4ac\)
\(=\left(-2m\right)^2-4.2.\left(-m-5\right)\)
\(=4m^2+8m+40\)
\(=\left(2m\right)^2+8m+2^2-2^2+40\)
\(=\left(2m+2\right)^2+36>0\forall m\)
Vậy pt luôn có 2 nghiệm phân biệt với mọi m
b/ Theo Vi-et ta có: \(\hept{\begin{cases}S=x_1+x_2=-\frac{b}{a}=\frac{2m}{2}=m\\P=x_1x_2=\frac{c}{a}=\frac{-m-5}{2}\end{cases}}\)
Ta có: \(x_1\left(x_1-2x_2\right)+x_2\left(x_2-2x_1\right)=15\)
\(\Leftrightarrow x_1^2-2x_1x_2+x_2^2-2x_1x_2=15\)
\(\Leftrightarrow S^2-2P-4x_1x_2=15\)
\(\Leftrightarrow m^2-2.\frac{-m-5}{2}-4S=15\)
\(\Leftrightarrow m^2+\frac{2m+10}{2}-4m=15\)
Quy đồng bỏ mẫu, mẫu chung là 2:
\(\Leftrightarrow2m^2+2m+10-8m=15\)
\(\Leftrightarrow2m^2-6m+10=15\)
\(\Leftrightarrow2\left(m^2-3m+5\right)=15\)
\(\Leftrightarrow m^2-3m+5=\frac{15}{2}\)
\(\Leftrightarrow m^2-3m+5-\frac{15}{2}=0\)
\(\Leftrightarrow m^2-3m-\frac{5}{2}=0\)
\(\Leftrightarrow m^2-3m+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2-\frac{5}{2}=0\)
\(\Leftrightarrow\left(m-\frac{3}{2}\right)^2-\frac{19}{4}=0\)
\(\Leftrightarrow\left(m-\frac{3}{2}\right)^2=\frac{19}{4}\)
\(\Leftrightarrow\left(m-\frac{3}{2}\right)^2=\left(\frac{\sqrt{19}}{2}\right)^2\)
\(\Leftrightarrow m-\frac{3}{2}=\frac{\sqrt{19}}{2}\Leftrightarrow m=\frac{3+\sqrt{19}}{2}\)
Vậy:..
Cho hàm số y=f(x)=x3-3x2+1
a)Xác định điểm I thuộc đồ thị (C) của hàm số đã cho biết rằng hoành độ của điểm I là nghiệm của Phương trình f’’(x)= 0.
b)Viết công thức chuyển hệ tọa độ trong phép tịnh tiến vectơ OI và viết Phương trình của đường cong với hệ tọa độ IXY. Từ đó suy ra bằng I là tâm đối xứng đường cong (C).
c)Viết phương trình tiếp tuyến của đường cong (C) tại điểm I đối với hện tọa độ Oxy. Chứng minh rằng trên khoảng (-∞;1) đường cong (C) nằm phía dưới tiếp tuyến tại I của (C) và trên khoảng (1; +∞) đường cong (C) nằm phía trên tiếp tuyến đó.
2/a) Để phương trình có hai nghiệm phân biệt thì \(\Delta=m^2-4\left(m-1\right)>0\Leftrightarrow m^2-4m+4>0\)
\(\Leftrightarrow\left(m-2\right)^2>0\Leftrightarrow m\ne2\)
b) Ta có: \(x_1^3+x_2^3=\left(x_1+x_2\right)\left(x_1^2-x_1x_2+x_2^2\right)=\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]=26\) (1)
Áp dụng hệ thức Viet ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-m\\x_1x_2=\frac{c}{a}=m-1\end{cases}}\)
Thay vào (1) ta có:\(\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]=26\)
\(\Leftrightarrow-m\left[m^2-3\left(m-1\right)\right]=26\)
\(\Leftrightarrow-m^3+3m^2-3m=26\)
\(\Leftrightarrow-m^3+3m^2-3m-26=0\)
\(\Leftrightarrow\left(-m^3-2m^2\right)+\left(5m^2+10m\right)-\left(13m+26\right)=0\)
\(\Leftrightarrow-m^2\left(m+2\right)+5m\left(m+2\right)-13\left(m+2\right)=0\)
\(\Leftrightarrow\left(m+2\right)\left(-m^2+5m-13\right)=0\)
\(\Leftrightarrow\left(m+2\right)\left(m^2-5m+13\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=-2\\m^2-5m+13=0\left(1\right)\end{cases}}\)
Ta có: \(m^2-5m+13=\left(m-\frac{5}{2}\right)^2+\frac{27}{4}\ge\frac{27}{4}>0\forall x\)
Nên (1) vô nghiệm.Do đó m = -2
Đúng không ạ?Em không chắc đâu nha!
b2:
a; đen ta = 4-8m+16=-8m+20
để pt có 2 nghiệm phân biệt => đen ta >0
<=> -8m+20 > 0
<=>-8m > -20
<=>m < 5/2
b2:
b, theo định lí Viet ta có:{x1 + x2 =-1 // x1 . x2= m-2/2
theo bài ra ta có:x1^3 +x2^3 =-21
<=>x1.x2(x1^2 + x2^2)=-21
<=>x1.x2 (x1+x2)^2 - 2x1x2=-21
<=> (x1+x2)^2 - x1x2=-21
<=>1- m-2/2= -21(vì x1+x2=-1; x1x2=m-2/2)
<=>2-m+2=-42
<=>m=46
VẬY................
(thông cảm mik viết =máy tính nên hơi...............)