Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Delta ABC\) cân nên MH là p/g cũng là trung trực NK
Mà \(I\in MH\) nên \(NI=IK\)
\(\Rightarrow\Delta NIK\) cân tại \(I\Rightarrow\widehat{INK}=\widehat{IKN}\)
\(\Rightarrow\widehat{MNK}-\widehat{INK}=\widehat{MKN}-\widehat{IKN}\left(\Delta MNP.cân\right)\\ \Rightarrow\widehat{ANI}=\widehat{BKI}\)
\(\left\{{}\begin{matrix}\widehat{ANI}=\widehat{BKI}\left(cm.trên\right)\\NI=IK\left(cm.trên\right)\\\widehat{AIN}=\widehat{BIK}\left(đối.đỉnh\right)\end{matrix}\right.\Rightarrow\Delta AIN=\Delta BIK\left(g.c.g\right)\)
\(\Rightarrow AN=BK\Rightarrow\dfrac{AN}{MN}=\dfrac{BK}{MK}\left(MN=MK.do.\Delta MNK.cân\right)\)
\(\Rightarrow AB//NK\left(Talét.đảo\right)\\ \Rightarrow ABKN.là.hthang\)
Mà \(\widehat{MNK}=\widehat{MKN}\Rightarrow ABKN.là.hthang.cân\)
\(b,MH\perp NK\left(trung.trực\right)\\ \Rightarrow MH\perp AB\left(NK//AB\right)\Rightarrow MI\perp AB\)
Mà MI là p/g \(\Delta MNK\) nên cũng là p/g \(\Delta MAB\)
\(\Rightarrow\Delta MAB\) cân tại M
\(\Rightarrow MI\) là p/g cũng là trung trực AB
Mà MI là trung trực KN
\(\RightarrowĐpcm\)
a) MH là đường trung trực của AB , I thuộc MH => IN = IK
=> tam giác INK cân tại I => Góc INH = góc IKH
Mà góc MNK = góc MKN vì tam giác MNK cân tại M
=> Góc BNA = góc AKB . Dễ dàng suy ra tam giác AIN = tam giác BIK (g.c.g)
=> AN = BK . Đến đây áp dụng định lí ta lét đảo được AB // NK => ABKN là hình thang có hai góc kề 1 đáy bằng nhau => ABKN là hình thang cân
b) MK là đường trung trực của NK vì tam giác MNK cân, có đường phân giác MI
Vì AB // NK nên tam giác MAB cân tại M => có điều tương tự.
Chúc bạn học tốt !
M N K H A B I
Xét tam giác \(\Delta ANK\)VÀ\(\Delta BNK\)
\(\widehat{ANK}=\widehat{BNK}\)
\(\widehat{AKN}=\widehat{BNK}\)
KN là cạnh cụng
=> 2 tam giác = nhau ( g.c.g )
=> BN =AK ( 2 cạnh tương ứng )
=> ABKN là hình thang cân ( 2 dường chéo = nhau )
b) Ta có : ΔMKN là tam giác cân
=> MH là đường phân giác cũng là đường trung trực
Mà BA// KN ( hình thang )
BK = AN => MB = MA
=> MBA là tam giác cân ( đồng dạng với ΔMKN)
=> MI là trung trực chung của AB và KN ( dpcm)
M N P A B I
Xét \(\Delta APN\) Và \(\Delta BNP\)Có :
\(\widehat{ANP}=\widehat{BPN}\)
\(\widehat{APN}=\widehat{BNP}\)
PN là cạnh chung
=> \(\Delta APN=\Delta BNP\left(g-c-g\right)\)
=> PA = NB ( cạnh chung )
=> tứ giác ABPN là hình thang ( 2 đường chéo = nhau ) (dpcm)
b) Ta có : \(\Delta MNP\) là tam giác cân
=> MH là đường phân giác cũng là đường trung trực
Mà BA// PN ( hình thang )
BP = AN => MB = MA
=> MBA là tam giác cân ( đồng dạng với \(\Delta MNP\))
=> MI là trung trực chung của AB và PN ( dpcm)
M N K A B I H
a) Dễ thấy MH là đường trung trực của AB , I thuộc MH => IN = IK
=> tam giác INK cân tại I => Góc INH = góc IKH
Mà góc MNK = góc MKN vì tam giác MNK cân tại M
=> Góc BNA = góc AKB . Dễ dàng suy ra tam giác AIN = tam giác BIK (g.c.g)
=> AN = BK . Đến đây áp dụng định lí ta lét đảo được AB // NK => ABKN là hình thang có hai góc kề 1 đáy bằng nhau => ABKN là hình thang cân
b) Dễ thấy MK là đường trung trực của NK vì tam giác MNK cân, có đường phân giác MI
Vì AB // NK nên tam giác MAB cân tại M => có điều tương tự.
Bài 2 sử dụng tính chất của hình thang cân là ra ^^