K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 2:

a: Vì ΔABC~ΔDEF theo tỉ số đồng dạng là \(k=\dfrac{1}{2}\)

nên \(\dfrac{AB}{DE}=\dfrac{AC}{DF}=\dfrac{BC}{EF}=k=\dfrac{1}{2}\)

=>\(\dfrac{6}{DE}=\dfrac{8}{DF}=\dfrac{BC}{20}=\dfrac{1}{2}\)

=>\(DE=6\cdot2=12;DF=8\cdot2=16;BC=\dfrac{20}{2}=10\)

Chu vi tam giác ABC là:

10+6+8=24

Chu vi tam giác DEF là:

12+16+20=48

b: Xét ΔABC có AD là phân giác

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

=>\(\dfrac{BD}{6}=\dfrac{CD}{8}\)

=>\(\dfrac{BD}{3}=\dfrac{CD}{4}\)

mà BD+CD=BC=10

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)

=>\(BD=3\cdot\dfrac{10}{7}=\dfrac{30}{7};CD=4\cdot\dfrac{10}{7}=\dfrac{40}{7}\)

 

 

Bài 1:

a: M thuộc AB

\(AM=\dfrac{1}{2}AB\)

Do đó: M là trung điểm của AB

Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{MN}{BC}\)

nên MN//BC

Xét ΔAMN và ΔABC có

\(\widehat{AMN}=\widehat{ABC}\)(hai góc đồng vị, MN//BC)

\(\widehat{MAN}\) chung

Do đó: ΔAMN~ΔABC

b: ΔAMN~ΔABC

=>\(k=\dfrac{MN}{BC}=\dfrac{1}{2}\)

Bài 2:

loading...

loading...

28 tháng 2 2021

A B C 9 12 D E

a, Xét tam giác ABC và tam giác EDC ta có : 

^C _ chung 

\(\frac{BC}{DC}=\frac{AC}{EC}\)

^BAE = ^CED = 90^0 

=> tam giác ABC ~ tam giác CED ( g.c.g ) 

HAB ? ^H ở đâu bạn ? 

b, Vì AD là tia phân giác tam giác ABC ta có : 

\(\frac{AB}{AC}=\frac{BD}{DC}\Leftrightarrow\frac{9}{12}=\frac{BD}{DC}\)

hay \(\frac{BD}{DC}=\frac{9}{12}\)tự tính BD và CD nhé 

c, Vì AB vuông AC ; DE vuông AC => AB // DE. Áp dụng hệ quả Ta lét : 

\(\frac{CE}{BC}=\frac{DE}{AB}\)thay dữ liệu bên phần b tính 

d, Áp dụng Py ta go với dữ kiện bên trên tìm tí số 

30 tháng 3 2018

Câu 1:  

a)   \(\Delta ABC\) có   \(AD\) là phân giác góc BAC

\(\Rightarrow\)\(\frac{DB}{AB}=\frac{DC}{AC}\)

\(\Rightarrow\)\(\frac{DB}{DC}=\frac{AB}{AC}=\frac{5}{6}\)

vậy... 

23 tháng 8 2020

a) Xét 2 tam giác ADB và BCD có:

góc DAB = góc DBC (gt)

góc ABD = góc BDC ( so le trong )

nên tam giác ADB đồng dạng với tam giác BDC.(1)

b) Từ (1) ta được AB/BC = DB/CD = AB/BD

hay ta có; AD/BC = AB/BD <==> 3,5/BC = 2,5/5

==> BC= 3,5*5/2,5 = 7 (cm)

ta cũng có: DB/CD = AB/BD <==> 5/CD = 2,5/5

==> CD = 5*5/2,5 =10 (cm)

c) Từ (1) ta được;

AD/BC = DB/CD = AB/BD hay 3.5/7 = 5/10 = 2,5/5 = 1/2 .

ta nói tam giác ADB đồng giạc với tam giác BCD theo tỉ số đồng dạng là 1/2

mà tỉ số diện tích bằng bình phương tỉ số động dạng

do đó S ADB/ S BCD = (1/2)^2 = 1/4

4 tháng 5 2019

45 H B C D                                                                a,  CM: \(\Delta AHB\)đồng dạng voi\(\Delta CAB\)

- Vì \(AH\perp BC\Rightarrow\widehat{AHB=90^o}\)

- Xét \(\Delta AHB\)và \(\Delta CAB\)có:

\(\widehat{AHB}=\widehat{BAC}\)

\(\widehat{A}\)chung

\(\Rightarrow\Delta AHB\)đồng dạng voi \(\Delta CAB\)(g-g) (đpcm)

b, CM: \(AC^2=CH.BC\)

- Xét \(\Delta AHC\)và \(\Delta BAC\)có:

\(\widehat{AHC}=\widehat{BAC}\left(=90^o\right)\)

\(\widehat{C}\)chung

\(\Rightarrow\Delta AHC\)đòng dạng với\(\Delta BAC\)(g-g)

\(\Rightarrow\frac{AC}{BC}=\frac{HC}{AC}\)

\(\Leftrightarrow AC^2=CH.BC\left(đpcm\right)\)