Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
trong tam giac vuong ABH Cco \(AH^2+BH^2=AB^2\Rightarrow AH^2=AB^2-BH^2\left(1\right)\)
AHC co \(AH^2+HC^2=AC^2\Rightarrow AH^2=AC^2-HC^2\left(2\right)\)
tu (1) va(2 ) suy ra \(AB^2-BH^2=AC^2-HC^2\Rightarrow AB^2+HC^2=AC^2+BH^2\)
b) Định lí PYTAGO cho tam giác AHM vuông tại H: \(AM^2=AH^2+HM^2\Rightarrow AH^2=AM^2-HM^2\)
M trung điểm HC \(\Rightarrow HM=MC\Rightarrow AH^2=AM^2-MC^2\)(1)
Định lí PYTAGO cho 2 tam giác AMI và CMI đều vuông tại I: \(\hept{\begin{cases}AM^2=AI^2+MI^2\\MC^2=MI^2+IC^2\end{cases}}\)
Thế vào (1) \(\Rightarrow AH^2=\left(AI^2+MI^2\right)-\left(MI^2+IC^2\right)=AI^2-IC^2\)
a, bc^2 = ab^2 +ac^2
<=.> (ae+eb)^2 +(af+fc)^2
<=.>AE^2 +2 AE.EB +EB^2 +AF^2+FC^2+2AF,FC
<=> EF^2 +EB^2 +CF^2 +2.(EH^2+FH^2)
<=>EB^2 +CF^2 + AH ^2 + 2 AH^2 vì tứ giác EHAF là hcn suy ra AH =EF
<=>EB^2 +CF^2+3 AH^2 (đpcm)
b, cb =2a là thế nào vậy
Ta có BE2 = BH2 - EH2
CF2 = CH2 - FH2
=> BE2 + CF2 = BH2 + CH2 - ( EH2 +FH2)= BH2 + CH2 - EF2 = BH2 + CH2 - AH2 = BH2 + CH2 - BH*HC>= 2 BH*HC - BH*HC
= BH*HC (BĐT Cô-si)
Dấu = xảy ra khi BH=HC hay tam giác ABC vuông cân.
a, xét tứ giác AIHM có:
MI vuông góc vs AB=>góc MIA=900
BH vuông góc vs AC=>góc AHM=900
=>góc AIM=AHM
=>tứ giác AIHM nt
=>I,A,H,M cùng thuộc 1 đường tròn