Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a: ta có: ΔAHB vuông tại H
mà HD là đường trug tuyến
nên HD=AB/2=AD(1)
Ta có: ΔAHC vuông tại H
mà HE là đường trung tuyến
nên HE=AE(2)
Từ (1) và (2) suy ra AH là đường trung trực của DE
hay D và E đối xứng nhau qua AH
b: Xét ΔABC có
D là trung điểm của AB
E là trug điểm của AC
Do đó: DE là đường trung bình
=>DE//HF
Xét ΔABC có
D là trung điểm của AB
F là trung điểm của BC
Do đó:DF là đường trung bình
=>DF=AC/2=HE
Xét tứ giác DEFH có DE//HF
nên DEFH là hình thang
mà DF=HE
nên DEFH là hình thang cân
a) EC=EA (MC=MB; ME//AB (_|_AC))
Tứ giác AFCM: AC _|_ FM=E; EC=EA; EF=EM => AFCM là hthoi
b) FA //= MB (=CM) => AFMB là hbh (1)
AEMD là hcn (AEM^ = EAD^ = ADM^ = 90o) và O là trung điểm ED => O cũng là trung điểm AM (2)
Từ (1) và (2) => O là trung điểm FB hay B,O,F thẳng hàng
c) Ta có: EA //= DN (_|_ AB ; = MD) => ANDE là hbh
a: Xét tứ giác AEMD có
góc AEM=góc ADM=góc DAE=90 độ
nên AEMD là hình chữ nhật
b: Vì M đối xứng với N qua AB
nên ABvuông góc với MN tại E và E là trung điểm của MN
Xét tứ giác AMBN có
E là trung điểm chung của AB và MN
nên AMBN là hình bình hành
mà MA=MB
nên AMBN là hình thoi
c: Xét tứ giác ANMC có
NM//AC
NM=AC
Do đó: ANMC là hình bình hành
=>AM cắt CN tại trung điểm của mỗi đường
=>C,O,N thẳng hàg
a) ADME là hình chữ nhật có ba góc vuông
b) Ta có ADME là hình chữ nhật nên OD=OM=OA=OE
xét tam giác MHA vuông tại H có OH là đường trung tuyến nên OH=1/2AH=OA nên tam giác AOH cân
c) xét tam giác DHE có trung tuyến HO bằng 1/2 AM=1/2 DE nên tam giác DHE vuông tại H
d) để DE nhỏ nhất thì AM nhỏ nhất mà AM lớn hơn hoặc bằng AH dấu bằng xảy ra khi M trùng H nghĩa là để DE nhỏ nhất thì M là chân đường cao hạ từ A xuông BC
e) tứ giác DMEA có 4 cạnh bằng nhau bằng 1/2 AB=1/2 AC nên DMEA là hình thoi có 1 góc vuông nên là hình vuông