K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2016

a, Xét ΔABH và ΔAHD có

       Góc A chung

        Góc ADH=Góc AHB=90° 

=> ΔABH ~ΔAHD(g.g)

=> AH/AB=AD/AH

=> AB.AD=AH²(1)

Xét ΔAEH và ΔAHC có:

Góc A chung 

Góc AEH = góc AHC

=>ΔAEH~ΔAHC(g.g)

=> AE/AH=AH/AC

=>AE.AC=AH²(2)

Từ (1);(2) => AD.AB=AE.AC(đpcm)

b, vì ΔABC vuông tại A có AI là trung tuyến ứng với cạnh huyền=> BI=IC=AI

=> ΔAIC cân tại I

=>góc IAC =góc ICA

Ta cũng có ΔBIA cân tại I =>góc IBA=góc BAI

Mà góc BAI =góc AED(cùng phụ)

         => góc IBA=góc AED

Mà ABI+góc ACI= 90°

=>    gócAED + góc IAC=90° 

      => DEvuông góc vs AI

c, 

27 tháng 8 2016

mình làm câu c,d nek bạn

c, ta có\(\Delta\)HEC vuông tại E( vì E là hình chiếu của H nên Góc E=90 độ)

        => EN là đường trung tuyến ứng vs cạnh huyền

        => EN=NH=NC( vì N là trung điểm của HC)

         => \(\Delta\)ENC cân tại N(NE=NC cmt)

        => góc NEC=góc NCE(hai góc đáy) (1)

     chứng minh tương tự trong \(\Delta\)BMD cân tại M

       => góc DBM=góc MDB(2)

ta có \(\Delta\)ABC vuông tại A nên góc DBM+góc NCE=90 độ

                                            =>góc MDB+ góc NEC(vì (1);(2))    (3)

      và \(\Delta\)\(\Delta\)
DAE vuông tại A nên góc ADE+góc AED=90 độ (4)

từ (3);(4)=>góc BDM+góc ADE=90 độ

              => góc MDH+góc HDE=90 độ ( 180 độ - (MDH+HDE))

              => DM\(\perp\) DE (*)

     và    góc DEA+ góc NEC=90 độ

            => góc HDE+góc HEN= 90 độ 

           => DE\(\perp\) EN (**)

từ (*); (**)=> MDEN là hình thang (DM // EN vì cùng \(\perp\)vs DE)

d, Ta có DHEA là hình chữ nhật (góc D= góc H =Góc E=90 độ)

=> OH=OA=OD=OE (t/c đường chéo hcn)

=> OH=OA=HA/2

ta có HM+HN=BM+NC(vì BM=MH; NH=NC)

    =>  MH+HN=BC/2=>MN=1/2 BC

 diện tích \(\Delta\)ABC =1/2. AH. BC

 diện tích \(\Delta\)MON=1/2.OH.MN=1/2.1/2AH.1/2BC

Vậy (S\(\Delta\) MON)/(S\(\Delta\)ABC)=(1/2.AH.BC)/(1/8 AH.BC)

                                         =4

Mình nghĩ là làm như vậy, có gì bạn góp ý nhahihi

 

 

30 tháng 7 2017

1 phần thôi nhé

Nối BE, Gọi P là giao điểm của AD với BE.

Áp dụng định lí Ceva cho tam giác ABE => AH/HE=BP/PE=> HP//AB(1).

Từ (1)=> Tam giác AHP cân tại H=> AH=HP.(2)

Ta cần chứng minh AD//CE <=> DP//CE <=> BD/BC=BP/BE <=> BD/BC=1-(EP/BE).(3)

Mà EP/BE=HP/AB (do (1))=> EP/BE= AH/AB=HD/DB (do (2) và tc phân giác).  (4)

Khi đó (3)<=> BD/BC=1-(HD/DB) hay (BD/BC)+(HD/DB)=1 <=> BD^2+HD*BC=BC*DB

<=>  BD^2+HD*BC= (BD+DC)*BD <=> BD^2+HD*BC= BD^2+BD*DC <=> HD*BC=BD*DC  

<=> HD/DB=CD/BC <=> AH/AB=CD/BC. (5) 

    Chú ý: Ta cm được: CA=CD (biến đổi góc).

Nên (5) <=> AH/AB=CA/BC <=> Tg AHB đồng dạng Tg CAB.( luôn đúng)

=> DpCm.