Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
s1=1+2+3+...+99
s1=99+98+...+1
2s1=100+100+....+100
2s1=100.99
s1=100.99:2=4950(mấy bài sau lam tương tự nha)
4+4^2+4^3+...+4^90 chia hết cho 21
=(4+4^2+4^3)+...+(4^88+4^89+4^90)
=84.1+(4^4+4^5+4^6+...+4^90)
vì 84 chia hết cho 21 suy ra tổng trên chia hét cho 21 (ĐPCM)
a: \(S=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-99}{100}=-\dfrac{1}{100}\)
c: \(5S_3=5^6+5^7+...+5^{101}\)
\(\Leftrightarrow4\cdot S_3=5^{101}-5^5\)
hay \(S_3=\dfrac{5^{101}-5^5}{4}\)
d: \(S_4=7\cdot\left(\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}+...+\dfrac{1}{69}-\dfrac{1}{70}\right)\)
\(=7\left(\dfrac{1}{10}-\dfrac{1}{70}\right)=7\cdot\dfrac{6}{70}=\dfrac{6}{10}=\dfrac{3}{5}\)
a) S = 5 + 52 + 53 + ... + 5100
=> S = ( 5 + 52 ) + ( 53 + 54 ) + ... + ( 599 + 5100 )
=> S = 5( 1 + 5 ) + 53( 1 + 5 ) + ... + 599( 1 + 5 )
=> S = 5 . 6 + 53 . 6 + ... + 599 . 6
=> S = ( 5 + 53 + ... + 599 ) . 6 chia hết cho 6
=> S chia hết cho 6
b) S1 = 2 + 22 + 23 + ... + 2100
=> S1 = ( 2 + 22 + 23 + 24 + 25 ) + ... + ( 296 + 297 + 298 + 299 + 2100 )
=> S1 = 2( 1 + 2 + 22 + 23 + 24 ) + ... +296( 1 + 2 + 22 + 23 + 24 )
=> S1 = 2 . 31 + ... + 296 . 31
=> S1 = ( 2 + ... + 296 ) . 31 chia hết cho 31
=> S1 chia hết cho 31
c) S2 = 165 + 215
=> S2 = ( 24 )5 + 215
=> S2 = 220 + 215
=> S2 = 220( 1 + 25 )
=> S2 = 220 . 33 chia hết cho 33
=> S2 chia hết cho 33
Bài 2 : a) Ta có :
\(S=1+3+3^2+3^3+...+3^{2014}+3^{2015}\)
=> \(S=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{2014}+3^{2015}\right)\)
=> \(S=4+3^2\left(1+3\right)+...+3^{2014}\left(1+3\right)\)
=> \(S=4+3^2.4+3^4.4+...+3^{2014}.4\)
=> \(S=4\left(3^2+3^4+...+3^{2014}\right)\)
Vì 4 chia hết cho 4 => S chia hết cho 4
b) \(S=1+3+3^2+3^3+...+3^{2014}+3^{2015}\)
=> \(S=\left(1+3+3^2+3^3\right)+...+\left(3^{2012}+3^{2013}+3^{2014}+3^{2015}\right)\)
=> \(S=40+3^4.40+3^8.40+...+3^{2012}.40\)
=> \(S=40\left(1+3^4+3^8+...+3^{2012}\right)\)
Vì 40 chia hết cho 10 => S chia hết cho 10 => S có tận cùng là 0
S = 1 + 3 + 32 + 33 + ..... + 32014 + 32015
=> 3S = 3 + 32 + 33 + 34 + .... + 32015 + 32016
=> 3S - S = 32016 - 1
=> S = ( 32016 - 1 ) : 2
Ta có 32016 = ( 34 )504 = 81504 = .......1
=> S = ( ......1 - 1 ) : 2 = ......0 : 2 = ......5
Vậy chữ số tận cùng của S là 5