K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2017

1/a/ Ta có: \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)

\(\Leftrightarrow\left(1+x^2\right)\left(1+xy\right)+\left(1+y^2\right)\left(1+xy\right)-2\left(1+x^2\right)\left(1+y^2\right)\ge0\)

 \(\left(y-x\right)^2\left(xy-1\right)\ge0\)(đúng vì \(\hept{\begin{cases}x\ge1\\y\ge1\end{cases}}\))

Dấu = xảy ra khi x = y = 1

29 tháng 1 2017

b/ Ta có: 6xy - 2x + 3y \(\le\)2

<=> (2x + 1)(3y - 1)\(\le\)1

Áp dụng câu a ta có:

\(A=\frac{1}{4x^2-4x+2}+\frac{1}{9y^2+6y+2}\)

\(=\frac{1}{1+\left(2x-1\right)^2}+\frac{1}{1+\left(3y-1\right)^2}\)

\(\ge\frac{2}{1+\left(2x-1\right)\left(3y+1\right)}\)

\(\ge\frac{2}{1+1}=1\)

Dấu = xảy ra khi x = 1, y = 0

10 tháng 3 2020

1/ \(Q=\frac{\left(x-2\right)^2}{x^2+1}+2\ge2\)

Đẳng thức xảy ra khi \(x=2\)

Vậy Min Q là 2 khi x = 2 (đẹp! :v)

P/s: Ngoài ra: \(Q=-\frac{\left(2x+1\right)^2}{x^2+1}+7\le7\)

10 tháng 5 2019

a,  \(ĐPCM:\hept{\begin{cases}\sqrt{x}-2\ne0\\3-\sqrt{x}\ne0\\x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne4\\x\ne9\\x\ge0\end{cases}}\)

\(Q=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)

    \(=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

   \(=\frac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

10 tháng 5 2019

Giúp mình bài 2 với

27 tháng 4 2019

O A B C D E F H K P Q x y S T

a, Xét tứ giác BFEC có ^BFC = ^BEC = 90o

=> Tứ giác BFEC nội tiếp

     Xét tứ giác CEHD có ^CEH = ^CDH = 90o 

=> tứ giác CEHD nội tiếp

b, Tứ giác BFEC nội tiếp => ^AFE = ^ACB

Mà ^ACB = ^BAx (góc tạo bởi tia tiếp tuyến và dây cung)

=> ^AFE = ^BAx 

=> xy // EF  (so le trong) 

Mà OA _|_ xy (tiếp tuyến)

=> OA _|_ EF

hay OA _|_ PQ

*Vì AQCB nội tiếp 

=> ^AQC + ^ABC = 180o (1)

Và ^AEF = ^ABC (2) 

Lại có ^AEF + ^AEQ = 180o (3)

Từ (1) ; (2) và (3) => ^AEQ = ^AQC

Còn câu c mình chưa nghĩ ra , có lẽ là chứng minh tứ  giác CEPT nội tiếp ...

17 tháng 8 2019

A B C M O D E F I P Q T

1) Ta có 4 điểm B,O,C,M cùng thuộc đường tròn đường kính OM (^MBO = ^MCO = 900) (1)

Do MI // AB và MB tiếp xúc với (O) tại B nên ^CIM = ^CAB = ^CBM

=> 4 điểm B,I,C,M cùng thuộc một đường tròn (2)

Từ (1) và (2) suy ra 5 điểm M,B,O,I,C cùng thuộc một đường tròn (đpcm).

2) Theo câu a thì M,B,I,C cùng thuộc (OM), có BC giao IM tại F => FI.FM = FB.FC

Đường tròn (O) có dây BC giao DE tại F nên FB.FC = FD.FE

Do vậy FI.FM = FD.FE => \(\frac{FI}{FE}=\frac{FD}{FM}\) (đpcm).

3) Điểm I thuộc đường tròn (OM) => ^OIM = 900 hay ^QIM = 900

Dễ thấy FQ.FT = FB.FC = FI.FM, suy ra tứ giác QMTI nội tiếp => ^QTM = ^QIM = 900

=> \(\Delta\)QTM vuông tại T. Theo ĐL Pytagoras: \(TQ^2+TM^2=QM^2\)

Vậy thì \(\frac{TQ^2+TM^2}{MQ^2}=1.\)

26 tháng 8 2020

ĐỀ BÀI THIẾU \(\widehat{BAC}=105^0\). Hình vẽ trong TKHĐ

Qua A kẻ đường thẳng vuông góc với AC cắt BC tại M. Tại E kẻ đường thẳng song song với AH cắt AC tại D.

Xét tam giác ABE có AB=BE=1 mà ^ABE=600 nên tam giác ABE đều. Khi đó 

\(AH=AB\cdot\sin\widehat{ABH}=\sin60^0=\frac{\sqrt{3}}{2}\)

Dễ thấy \(\Delta MAE=\Delta ADE\left(g.c.g\right)\Rightarrow AD=AM\Rightarrow\Delta\)AMC vuông tại A có đường cao AH theo hệ thức lượng:

\(\frac{1}{AC^2}+\frac{1}{AM^2}=\frac{1}{AH^2}\Rightarrow\frac{1}{AC^2}+\frac{1}{AD^2}=\frac{1}{\left(\frac{\sqrt{3}}{2}\right)^2}=\frac{4}{3}\)

26 tháng 8 2020

Gọi F đối xứng với C qua A. Khi đó tam giác FBC vuông tại F.

Theo hệ thức lượng thì \(BC^2=HC\cdot CF\). Mặt khác \(BC^2=2AB\cdot HC\)

Đến đây dễ rồi nha, làm tiếp thì chán quá :(