Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ngu thế tự đi mà làm rảnh đâu mà chỉ tao còn ko biết làm còn đi tìm câu trả lời đây này nhá:v có câu trả lời thì nói chuyện nhá ko có cút đi đồ ngu
Hình bạn tự vẽ nha!
a, ta có:
Góc A=Góc D=90°(gt)<=>AD_|_DC
BH_|_DC
=>BH//AD
ABCD là hình thang nên AB//CD
=>Tứ giác ABHD là hình chữ nhật.
b,Do ABHD là hình chữ nhật, nên:
AB=HD=3cm
CD=6cm=>HC=6-3=3 cm
Do BH_|_CD(gt)=>góc BHC=90°
=>tam giác BHC vuông tại H
Xét tam giác vuông BHC:
Theo định lý pitago trong tam giác vuông thì:
BC^2=HC^2+BH^2
=>BH^2=BC^2-HC^2=(5)^2-(3)^2=16
=>BH=4 cm
=>Diện tích hình chữ nhật ABHD là:
3.4=12 cm2
c,Do M là M là trung điểm của BC nên:
MB=MC=BC/2=5/2=2,5cm
Do N đối xứng với M qua E (gt)nên:
EM=EN
Đường chéo AH^2=AD^2+DH^2=25cm
=>AH=5cm=>EH=5/2=2,5cm
=>Tứ giác ABCHH=NMCD vì MC=ND=BC/2=2,5 cm
EM+EN=2AB=6 cm
AB//HC=3cm;BC//AH=5cm
=>NM//DC=6cm
==> Tứ giác NMCD là hình bình hành
d,bạn tự chứng minh (khoai quá)
a, chứng minh EFGH là hình bình hành do có EF//HG (cùng song2 với AC) và HE//GF(cùng song2 BD)
mà có EG=HF=> EFGH là hình thoi (*)
ta có BD//HE=> góc HEF vuông (**)
từ (*)(**) => EFGH là hình vuông ( hình thoi có 1 góc vuông )
A B C D E F G H M
a) Dễ dàng chứng minh được \(\Delta AEH=\Delta BFE=\Delta CGF=\Delta DHG\)
\(\Rightarrow EH=EF=FG=HG\)
=>EFGH là hình thoi
\(\Delta AEH\)vuông cân tại A =>\(\widehat{AEH}=45^0\)
\(\Delta BEF\)vuông cân tại B=>\(\widehat{BEF}=45^0\)
=>\(\widehat{HEF}=90^0\)
=> EFGH là hình vuông
b) Ta chứng minh được : \(\Delta EBC=\Delta FCD\left(cgv.cgv\right)\)
\(\Rightarrow\widehat{BCE}=\widehat{CDF}\)
\(\Rightarrow\widehat{BCE}+\widehat{MCD}=\widehat{CDF}+\widehat{MCD}\)
\(\Rightarrow90^0=\widehat{MCD}+\widehat{CDM}\)
\(\Rightarrow180^0-\widehat{MCD}-\widehat{CDM}=\widehat{DMC}\)
\(\Rightarrow\widehat{DMC}=90^0hayDF\perp CE\)
gọi N là giao điểm của AG và DF
cm tương tự \(DF\perp CE\)ta được AG\(\perp\)DF
=>GN//CM mà G là trung điểm của DC =>N là trung điểm của DM
\(\Delta\)ADM có AN vừa là đường cao vừa là đường phân giác =>\(\Delta ADM\)cân tại A
c)ta cm \(\Delta DMC~\Delta DCF\left(g.g\right)\Rightarrow\frac{DC}{DF}=\frac{CM}{CF}\)
\(\Rightarrow\frac{S_{DMC}}{S_{DCF}}=\left(\frac{DC}{DF}\right)^2\Rightarrow S_{DMC}=\left(\frac{DC}{DF}\right)^2\cdot S_{DCF}\)
Mà \(S_{DCF}=\frac{1}{2}DF\cdot DC=\frac{1}{4}DC^2\)
Vậy \(S_{DMC}=\frac{DC^2}{DF^2}\cdot\frac{1}{4}DC^2\)
Trong tam giác DCF theo định lý py ta go có:
\(DF^2=CD^2+CF^2=CD^2+\left(\frac{1}{2}AB\right)^2=CD^2+\frac{1}{4}CD^2=\frac{5}{4}CD^2\)
Do đó \(S_{DMC}=\frac{CD^2}{\frac{5}{4}CD^2}\cdot\frac{1}{4}CD^2=\frac{1}{5}CD^2=\frac{1}{5}a^2\)
Bài 2;
Gọi M là trung điểm của HD
Xét ΔHDC có HM/HD=HI/HC
nên MI//DC và MI=DC/2
=>MI vuông góc với AD và MI=AB
Xét tứ giác ABIM có
AB//IM
AB=IM
Do đó: ABIM là hình bình hành
=>BI//AM
Xét ΔADI có
DH,IM là các đường cao
DH cắt IM tại M
Do đó: M là trực tâm
=>AM vuông góc với ID
=>IB vuông góc với DI