\(\Delta ABC\) cân ở A (\(\widehat{A}\ne120\) độ)....">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2019

Ta có tam giác ABC cân tại A

=> AB=AC
Mà tam giác ABD và tam giác ACE đều nên

AB=AD=BD=AC=AE=CE

Xét tam giác BDEvà tam giác CED

Góc ADB=góc AEC= 60độ

DE chung

DB=EC

tam giác BDE= tam giác CED

=> BE= DC

b, Xét tam giác BDC và tam giác CEB

BC chung

BE= DC

BD= EC

=> tam giác BDC = tam giác CEB

=> Góc DCB = EBC

BOC cân tại O

BO=OC

Vì ∆ABC cân tại A 

=> AB = AC 

Mà ∆ ABD là ∆ đều

=> AB = AD = BD 

Mà ∆ACE là ∆ đều 

AC = AE = CE 

=> DB = CE

Mà ta thấy: 

∆ACE là ∆ đều 

=> EAC = ECA = AEC = 45° 

=> ECA = DBA = 45°

∆ADB là ∆ đều 

=> ADB = DBA = BDA = 45° 

Mà DBC = DBA + ABC 

BCE = ECA + ACB 

Mà ABC = ACB 

=> DBC = ECB 

Mà HBD + DBC = 180° (kề bù) 

KCE + ECB = 180° ( kề bù) 

=> HBD = KCE 

Xét ∆ vuông BHD và ∆ vuông CKE ta có : 

DB = CE ( cmt)

HBD = KCE (cmt)

=> ∆BHD = ∆CKE (ch-gn)

=> DH = CK 

=> D, E cách đều đường thẳng BC

EAC = ECA = AED  = 60° nhé 

Thay hộ mình ở dưới

16 tháng 1 2020

A D E B C I M N K F

a) +) Chứng minh \(\Delta\)DAC = \(\Delta\)BAE 

Thật vậy: Ta có: AD = AB ( \(\Delta\)DAB đều ) 

                         ^DAB = ^CAE ( = 60\(^o\); \(\Delta\)DAB đều ; \(\Delta\)CAE đều ) => ^DAC = ^BAE 

                           CA = AE ( \(\Delta\)CAE đều )

Từ 3 điều trên => \(\Delta\)DAC = \(\Delta\)BAE ( c.g.c) (1)

=>  ^ABE = ^ADC (2)

+) Xét \(\Delta\)KAD và \(\Delta\)KIB có: ^DKA = ^BKI ( đối đỉnh )

                                                  ^KDA = ^KBI( theo  ( 2)  )

                    mà ^DKA + ^KDA + ^KAD= ^BKI + ^KBI + ^KIB = 180\(^o\)

=>  ^KIB = ^KAD = ^BAD=  60\(^o\)

=> ^DIB = 60\(^o\)

b) Từ (1) => DC = BE mà M là trung điểm DC; N là trung điểm BE 

=> DM  = BN (3) 

+) Xét \(\Delta\)BAN và \(\Delta\)DAM 

có: BN = DM ( theo (3)

     ^ABN = ^ADM ( theo (2)

     AB = AD ( \(\Delta\)ADB đều )

=> \(\Delta\)BAN = \(\Delta\)DAM  (4) 

=> AN = AM  => \(\Delta\)AMN cân tại A  (5)

+) Từ (4) => ^BAN = ^DAM => ^BAM + ^MAN = ^DAB + ^BAM  

=> ^MAN = ^DAB = 60\(^o\)(6)

Từ (5); (6) => \(\Delta\)AMN đều 

c) +) Trên tia đối tia MI lấy điểm F sao cho FI = IB => \(\Delta\)FIB cân tại I 

mà ^BIF = ^BID = 60\(^{\text{​​}o}\)( theo (a))

=> \(\Delta\)FIB đều  (7)

=> ^DBA = ^FBI( =60\(^o\))

=> ^DBF + ^FBA = ^FBA + ^ABI 

=> ^DBF = ^ABI  

Lại có: BI = BF ( theo (7) ) và BA = BD ( \(\Delta\)BAD đều )

Từ (3) điều trên => \(\Delta\)DFB = \(\Delta\)AIB  => ^AIB = ^DFB = 180\(\text{​​}^o\)- ^BFI = 180\(\text{​​}^o\)-60\(\text{​​}^o\)=120\(\text{​​}^o\)

+) Mặt khác ^BID = 60 \(\text{​​}^o\)( theo (a) ) 

=> ^DIE = 180\(\text{​​}^o\)- ^BID = 120 \(\text{​​}^o\)và ^DIA = ^AIB - ^BID = 120\(\text{​​}^o\)-60\(\text{​​}^o\)=60\(\text{​​}^o\)

=> ^AIE = ^DIE - ^DIA = 120\(\text{​​}^o\)-60\(\text{​​}^o\)=60\(\text{​​}^o\)

=> ^DIA = ^AIE ( = 60\(\text{​​}^o\)

=> IA là phân giác ^DIE.

                       

2 tháng 5 2018

Hình vẽ : 

2 tháng 5 2018

a ) 

Vì ΔABDΔABD là tam giác đều(gt) ⇒DABˆ⇒DAB^=600

ΔACEΔACE là tam giác đều(gt) ⇒EACˆ⇒EAC^=600

⇒DABˆ+BACˆ=EACˆ+BACˆ⇒DAB^+BAC^=EAC^+BAC^

⇒DACˆ=BAEˆ⇒DAC^=BAE^

Xét ΔDACΔDAC và ΔBAEΔBAE có:

DA=BA(vì ΔABDΔABD là tam giác đều)

DACˆ=BAEˆDAC^=BAE^ (cmt)

AC=AE(vì ΔACEΔACE là tam giác đều)

⇒ΔDAC=ΔBAE(c.g.c)

b, Ta có: ^ AEM + ^MEC = 60 độ

mà ^AEM = ACD (Tam giác ABE = tam giác ADC)

=>^MEC + ^MCA = 60 độ

Ta lại có: ^ACE = 60 độ

=>^MCA + ^ACE+ ^MEC = 120 độ

mà ^MCA + ^ACE = ^MCE

=> ^MCE + ^MEC = 120 độ

Ta lại có: ^EMC + ^MCE + ^CEM = 180 độ

mà ^MCE + ^CEM =120 độ (cm trên)

=>^EMC + 120 độ =180 độ

=> ^EMC = 180 độ - 120 độ =60 độ

Ta lại có: ^BMC + ^EMC = 180 độ

mà ^EMC = 60 độ

=> ^BMC + 60 độ =180 độ

=> ^BMC = 180 độ - 60 độ = 120 độ (đpcm)

4 tháng 4 2018

câu này dễ mà bạn tra mạng sẽ ra

16 tháng 1 2020

Câu hỏi của Phạm Thùy Dung - Toán lớp 7 - Học toán với OnlineMath