Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 6 :
a, Ta có : \(x+\frac{2x+\frac{x-1}{5}}{3}=1-\frac{3x-\frac{1-2x}{3}}{5}\)
=> \(\frac{15x}{15}+\frac{5\left(2x+\frac{x-1}{5}\right)}{15}=\frac{15}{15}-\frac{3\left(3x-\frac{1-2x}{3}\right)}{15}\)
=> \(15x+5\left(2x+\frac{x-1}{5}\right)=15-3\left(3x-\frac{1-2x}{3}\right)\)
=> \(15x+10x+\frac{5\left(x-1\right)}{5}=15-9x+\frac{3\left(1-2x\right)}{3}\)
=> \(15x+10x+x-1=15-9x+1-2x\)
=> \(15x+10x+x-1-15+9x-1+2x=0\)
=> \(37x-17=0\)
=> \(x=\frac{17}{37}\)
Vậy phương trình trên có nghiệm là \(S=\left\{\frac{17}{37}\right\}\)
Bài 7 :
a, Ta có : \(\frac{x-23}{24}+\frac{x-23}{25}=\frac{x-23}{26}+\frac{x-23}{27}\)
=> \(\frac{x-23}{24}+\frac{x-23}{25}-\frac{x-23}{26}-\frac{x-23}{27}=0\)
=> \(\left(x-23\right)\left(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}\right)=0\)
=> \(x-23=0\)
=> \(x=23\)
Vậy phương trình trên có nghiệm là \(S=\left\{23\right\}\)
c, Ta có : \(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\)
=> \(\frac{x+1}{2004}+1+\frac{x+2}{2003}+1=\frac{x+3}{2002}+1+\frac{x+4}{2001}+1\)
=> \(\frac{x+2005}{2004}+\frac{x+2005}{2003}=\frac{x+2005}{2002}+\frac{x+2005}{2001}\)
=> \(\frac{x+2005}{2004}+\frac{x+2005}{2003}-\frac{x+2005}{2002}-\frac{x+2005}{2001}=0\)
=> \(\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)
=> \(x+2005=0\)
=> \(x=-2005\)
Vậy phương trình trên có nghiệm là \(S=\left\{-2005\right\}\)
e, Ta có : \(\frac{x-45}{55}+\frac{x-47}{53}=\frac{x-55}{45}+\frac{x-53}{47}\)
=> \(\frac{x-45}{55}-1+\frac{x-47}{53}-1=\frac{x-55}{45}-1+\frac{x-53}{47}-1\)
=> \(\frac{x-100}{55}+\frac{x-100}{53}=\frac{x-100}{45}+\frac{x-100}{47}\)
=> \(\frac{x-100}{55}+\frac{x-100}{53}-\frac{x-100}{45}-\frac{x-100}{47}=0\)
=> \(\left(x-100\right)\left(\frac{1}{55}+\frac{1}{53}-\frac{1}{45}-\frac{1}{47}\right)=0\)
=> \(x-100=0\)
Vậy phương trình trên có nghiệm là \(S=\left\{100\right\}\)
a)
\(\frac{x-23}{24}+\frac{x-23}{25}=\frac{x-23}{26}+\frac{x-23}{27}\)
\(\Leftrightarrow (x-23)\left(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}\right)=0\)
Dễ thấy: \(\frac{1}{24}>\frac{1}{26}; \frac{1}{25}>\frac{1}{27}\Rightarrow \frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}>0\)
$\Rightarrow \frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}\neq 0$
Do đó $x-23=0\Rightarrow x=23$
b)
PT \(\Leftrightarrow \frac{x+100}{98}+\frac{x+100}{97}=\frac{x+100}{96}+\frac{x+100}{95}\)
\(\Leftrightarrow (x+100)\left(\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\right)=0\)
Dễ thấy: $\frac{1}{98}< \frac{1}{96}; \frac{1}{97}< \frac{1}{95}$
$\Rightarrow \frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}< 0$ hay khác $0$
$\Rightarrow x+100=0\Rightarrow x=-100$
c)
PT \(\Leftrightarrow \frac{x+1}{2004}+1+\frac{x+2}{2003}+1=\frac{x+3}{2002}+1+\frac{x+4}{2001}+1\)
\(\Leftrightarrow \frac{x+2005}{2004}+\frac{x+2005}{2003}=\frac{x+2005}{2002}+\frac{x+2005}{2001}\)
\(\Leftrightarrow (x+2005)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)
Dễ thấy $\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}<0$ hay khác $0$
Do đó $x+2005=0\Rightarrow x=-2005$
d)
PT \(\Leftrightarrow \frac{201-x}{99}+1+\frac{203-x}{97}+1+\frac{205-x}{96}+1=0\)
\(\Leftrightarrow \frac{300-x}{99}+\frac{300-x}{97}+\frac{300-x}{96}=0\)
\(\Leftrightarrow (300-x)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{96}\right)=0\)
Dễ thấy \(\frac{1}{99}+\frac{1}{97}+\frac{1}{96}>0\) hay khác $0$
Do đó $300-x=0\Rightarrow x=300$
bài1 A=\(\left(\frac{3-x}{x+3}\cdot\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
=\(\left(-\frac{x-3\cdot\left(x+3\right)^2}{\left(x+3\right)^2\cdot\left(x-3\right)}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
=\(-\frac{x}{x+3}\cdot\frac{x+3}{3x^2}=\frac{-1}{3x}\)
b) thế \(x=-\frac{1}{2}\)vào biểu thức A
\(-\frac{1}{3\cdot\left(-\frac{1}{2}\right)}=\frac{2}{3}\)
c) A=\(-\frac{1}{3x}< 0\)
VÌ (-1) <0 nên 3x>0
x >0
mấy câu này dễ mà :V câu a+c lấy mỗi phân số trừ cho 1 ra tử chung rút ra thì tính b+d thì cộng một tử chung rồi lại tính tiếp thôi
a) x+1/2004 + 1 + x+2/2003 +1 - x+3/2002 +1 - x+4/2001 +1
=> x+2005/2004 + x+2005/2003 - x+2005/2002 - x+2005/2001=0
=> (x + 2005) ( 1/2004+1/2003 - 1/2002 - 1/2001) =0
ta thấy 1/2004+1/2003-1/2002-1/2001 # 0
=> x+2005=0 => x=-2005
câu 1
a)\(ĐKXĐ:x^3-8\ne0=>x\ne2\)
b)\(\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2-2x+4\right)}{\left(x-2\right)\left(x^2-2x+4\right)}=\frac{3}{x-2}\left(#\right)\)
Thay \(x=\frac{4001}{2000}\)zô \(\left(#\right)\)ta được
\(\frac{3}{\frac{4001}{2000}-2}=\frac{3}{\frac{4001}{2000}-\frac{4000}{2000}}=\frac{3}{\frac{1}{2000}}=6000\)
bố mẹ thằng nào biết mới lạ
c) \(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\\ \Leftrightarrow\frac{x+1}{2004}+1+\frac{x+2}{2003}+1=\frac{x+3}{2002}+1+\frac{x+4}{2001}+1\\ \Leftrightarrow\frac{x+2005}{2004}+\frac{x+2005}{2003}=\frac{x+2005}{2002}+\frac{x+2005}{2001}\\ \Leftrightarrow\frac{x+2005}{2004}+\frac{x+2005}{2003}-\frac{x+2005}{2002}-\frac{x+2005}{2001}=0\\ \Leftrightarrow\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\\ \Leftrightarrow\left(x+2005\right)=0\Leftrightarrow x=-2005\)
câu egf làm tương tự