K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2017

a) Để phân số trên tồn tại thì \(n^2+3\ne0\)

\(3\ne0\)\(n^2\ge0\)

=> \(n^2+3\ne0\)

=> A luôn luôn tồn tại

b)        n=-5 TM ĐKXĐ

Thay n=-5 vào A ta được:

\(A=\frac{-5-5}{\left(-5\right)^2+3}=-\frac{10}{28}=-\frac{5}{14}\)

           n=0 TM ĐKXĐ

Thay n=0 vào A ta được:

    \(A=\frac{0-5}{0^2+3}=-\frac{5}{3}\)

           n=5 TM ĐKXĐ:

 Thay n=5 TM ĐKXĐ:

 \(A=\frac{5-5}{5^2+3}=\frac{0}{28}=0\)

6 tháng 8 2016

a) Do n2 luôn > hoặc = 0 khác -3 => n2 + 3 khác 0

=> A luôn tồn tại

b) bn chỉ việc thay n rùi tính A là ra

AH
Akai Haruma
Giáo viên
31 tháng 8 2024

Lời giải:

a. Ta thấy $n^2+5\geq 5> 0$ với mọi $n\in\mathbb{Z}$

$\Rightarrow n^2+5\neq 0$ với mọi $n\in\mathbb{Z}$

$\Rightarrow$ phân số $M$ luôn tồn tại.

b.

Với $n=0$ thì $M=\frac{0-3}{0^2+5}=\frac{-3}{5}$

Với $n=2$ thì $M=\frac{2-3}{2^2+5}=\frac{-1}{9}$

Với $n=-5$ thì $M=\frac{-5-3}{(-5)^2+5}=\frac{-4}{15}$

NM
14 tháng 1 2022

ta có mẫu của M là : \(n^2+5>0\forall n\) thế nên M luôn tồn tại

b. ta có bảng sau

n

0

2-5
M\(-\frac{3}{5}\)\(-\frac{1}{9}\)\(-\frac{8}{30}\)
7 tháng 2 2016

Phân số M không tồn tại khi n2+15 =0 => n2= -15(vô lý vì bình phương của 1 sô nguyên luôn không âm).Do đó,n2+15 luôn khác 0 nên phân số M luôn tồn tại.

7 tháng 2 2016

bai toan nay kho qua

25 tháng 1 2016

a,Một phân số tồn tại khi mẫu khác 0

Nhận thấy phân số A có mẫu luôn lớn hơn 0

Nên phân số A luôn tồn tại với mọi n

b, n=-5 thì A=-5/14
    n=0 thì A=-5/3
    n=5 thì A=0

 

23 tháng 2 2019

Để A thuộc luôn tồn tại mà n thuộc Z suy ra n+8 chia hết cho 2n-5

   suy ra (n+8).2 chia hết cho n+8 hay2n+16

Suy ra (2n+16)-(2n-5) chian hết cho 2n-5

suy ra 21 chia hết cho 2n-5suy ra 2n-5 thuộc Ư(21)={-21;;21;3;-3;7;-7;1;-1}

                                                 suy ra 2n thuộc{-16;26;8;2;12;-2;6;4}

                                                suy ra n thuộc{-8;13;4;1;6;-1;3;2}

Vậy n thuộc{-8;13;4;1;6;-1;3;2}