Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do đường thẳng đã cho đi qua A(−1,0)A(−1,0) nên
0=−a+b0=−a+b
<−>a=b<−>a=b
Xét ptrinh hoành độ giao điểm
12x2=ax+a12x2=ax+a
<−>x2−2ax−2a=0<−>x2−2ax−2a=0
Do hai đồ thị tiếp xúc nên ptrinh trên có 1 nghiệm duy nhất, tức là Δ′=0Δ′=0 hay
a2+2a=0a2+2a=0
<−>a(a+2)=0<−>a(a+2)=0
Vậy a=0a=0 hoặc a=−2a=−2
Do a≠0a≠0 nên a=−2a=−2.
Vậy y=−2x−2y=−2x−2
a, (d) đi qua A(1;5) hay A(1;5) thuộc (d)
<=> \(5=4m-3\Leftrightarrow m=2\)
b, Hoành độ giao điểm (P) ; (d) tm pt
\(x^2-2mx-2m+3=0\)
\(\Delta'=m^2-\left(-2m+3\right)=m^2+2m-3\)
Để (P) tiếp xúc (d) thì pt có nghiệm kép khi
\(m^2+2m-3=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=-3\end{cases}}\)
a: Thay x=1 và y=5 vào (d), ta được:
2m+2m-3=5
=>4m-3=5
hay m=2
b: Phương trình hoành độ giao điểm là:
\(x^2-2mx-2m+3=0\)
Để(P) tiếp xúc với (d) thì \(\left(-2m\right)^2-4\left(-2m+3\right)=0\)
\(\Leftrightarrow4m^2+8m-12=0\)
\(\Leftrightarrow\left(m+3\right)\left(m-1\right)=0\)
=>m=-3 hoặc m=1
a: Thay x=0 và y=9 vào (d), ta được:
\(b+6\cdot0=9\)
hay b=9
Vậy: (d): y=6x+9
b: Phương trình hoành độ giao điểm là:
\(ax^2-6x-9=0\)
\(\text{Δ}=\left(-6\right)^2-4\cdot a\cdot\left(-9\right)=36a+36\)
Để (d) tiếp xúc với (P) thì 36a+36=0
hay a=-1
`a)` Vì `(d)` đi qua `M(0;9)` nên thay `x=0` và `y=9` vào `(d)` có: `b=9`
`b)` Với `b=9=>(d):y=6x+9`
Xét ptr hoành độ của `(d)` và `(P)` có:
`ax^2=6x+9`
`<=>ax^2-6x-9=0` `(1)`
Để `(d)` tiếp xúc với `(P)` thì ptr `(1)` có nghiệm kép
`<=>\Delta' =0`
`<=>(-3)^2-a.(-9)=0`
`<=>a=-1` (t/m)
1, - Xét phương trình hoành độ giao điểm :\(2x^2=ax+b\)
\(\Rightarrow2x^2-ax-b=0\left(I\right)\)
Mà (P) tiếp xúc với d .
Nên PT ( I ) có duy nhất một nghiệm .
\(\Leftrightarrow\Delta=\left(-a\right)^2-4.2.\left(-b\right)=a^2+8b=0\)
Lại có : d đi qua A .
\(\Rightarrow b+0a=-2=b\)
\(\Rightarrow a=4\)
2. Tương tự a
3. - Xét phương trình hoành độ giao điểm :\(2x^2=2m+1\)
\(\Rightarrow2x^2-2m-1=0\)
Có : \(\Delta^,=\left(-m\right)^2-\left(-1\right).2=m^2+3\)
=> Giao điểm của P và d là : \(\left\{{}\begin{matrix}x_1=\dfrac{m+\sqrt{m^2+3}}{2}\\x_2=\dfrac{m-\sqrt{m^2+3}}{2}\end{matrix}\right.\)