Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bn làm giúp mik câu b, c được không ạ vì 2 câu đó mik chưa biết làm.
Đêm qua em hỏi, chị lại ko nghĩ là em :V
Bài 1:
A D C B M N 1 1 1 2
*Hình ảnh chỉ mang tính chất minh họa
a) Ta có: \(xy\)\(//BD\)
Mà \(BD\)là phân giác \(\widehat{ABC}\) \(\Rightarrow BD\)cắt \(BC\)
\(\Rightarrow xy\)cắt \(BC\) ( gọi giao điểm là M )
b) Ta có: \(\widehat{A_1}=\widehat{B_1}\left(slt\right)\) mà \(\widehat{B_1}=\widehat{B_2}\left(gt\right)\)
\(\Rightarrow\widehat{A_1}=\widehat{B_2}\left(1\right)\)
Mặt khác \(\widehat{M_1}=\widehat{B_2}\left(đvi\right)\left(2\right)\)
Từ \(\left(1\right)\&\left(2\right)\Rightarrow\widehat{A_1}=\widehat{M_1}\)
c) Xét \(\Delta BAM\)có \(\widehat{A_1}=\widehat{M_1}\)(câu b)
\(\Rightarrow\Delta BAM\)cân tại \(B\)
\(\Delta BAM\)cân tại \(B\) có \(BN\) là đường phân giác
=> \(BN\)đồng thời là đường cao của \(\Delta BAM\)
=> Đpcm
Bài 2:
x y B 150 K H I
*Hình ảnh chỉ mang tính chất minh họa (Nhinf cais anhr thaays gowms quas)
a) Ta cos: \(AH\) vuông góc \(By\)\(;\) \(CK\)vuông góc \(Bx\)
Mà Bx tạo với tia By một góc 150 độ => Bx cắt By tại B
=> AH cắt CK ( tại giao điểm I )
b) Ta có: \(\widehat{ABC}=150^o\Rightarrow\widehat{ABH}=30^o\)
\(\Rightarrow\widehat{BAH}=90-\widehat{ABH}=60^o\)
\(\Rightarrow\widehat{AIC}=\widehat{AIK}=90-\widehat{BAH}=30^o\)
@@ Cách khác
Ta có: \(\widehat{HBK}=\widehat{ABC}=150^o\left(đđ\right)\)
Xét tứ giác BHIK có:
\(\widehat{AIC}=360-\widehat{IHB}-\widehat{IKB}-\widehat{HBK}\) (Nếu chưa học cái này thì chứng minh bằng cách chia tứ giác thành 2 tam giác)
\(\Leftrightarrow\widehat{AIC}=360-90-90-150=30^o\)
B1 :a)BC ko song song với BD vì chung B
->BC ko sog sog xy (xy//BD) nên cắt BC tại M
b)
c)NBA+ANB+BNA=180^o
NMB+MBN+BNM=180^o
AMB=MAB; B1=B2 (BN pg ABM)
Nen N1=N2;N1+N2=180^o ->ĐPCM
mỏi quá r` mai nghĩ tiếp mà vẽ hộ tui cái hình bài 2 vs
pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
a) Ta có: OA ⊥ OM (GT)
\(\Rightarrow\widehat{AOM}=90^0\)
Ta có: OB ⊥ ON (GT)
\(\Rightarrow\widehat{BON}=90^0\)
b)
Ta có: \(\left\{{}\begin{matrix}\widehat{AON}+\widehat{NOM}=90^0\left(=\widehat{AOM}\right)\\\widehat{BOM}+\widehat{NOM}=90^0\left(=\widehat{BON}\right)\end{matrix}\right.\)
=> Góc AON = Góc BOM
Câu 1 : C
Câu 2 : C
Câu 3 : A B C D M K H 1 2
a) Xét tam giác AMB và tam giác DMC , có :
AM = DM ( gt )
BM = CM ( gt )
góc AMB = góc DMC ( đối đỉnh )
=> tam giác AMB = tam giác DMC
=> DC = AB ( hai cạnh tương ứng )
Vậy DC = AB
b) Xét tam giác AKM và tam giác DHM , có :
góc AKM = góc DHM ( = 90o )
góc M1 = góc M2 ( đối đỉnh )
MA = MD ( gt )
=> tam giác AKM = tam giác DHM ( g-c-g )
=> HD = AK ( hai cạnh tương ứng )
=> góc KAM = góc HDM ( hai góc tương ứng ) mà hai góc ở vị trí so le trong nên HD // AK ( dấu hiệu nhận biết hai đường thẳng song song )
Vậy HD = AK ; HD // AK ( đpcm )