K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2020

a) Xét 2 tam giác ADB và BCD có:

góc DAB = góc DBC (gt)

góc ABD = góc BDC ( so le trong )

nên tam giác ADB đồng dạng với tam giác BDC.(1)

b) Từ (1) ta được AB/BC = DB/CD = AB/BD

hay ta có; AD/BC = AB/BD <==> 3,5/BC = 2,5/5

==> BC= 3,5*5/2,5 = 7 (cm)

ta cũng có: DB/CD = AB/BD <==> 5/CD = 2,5/5

==> CD = 5*5/2,5 =10 (cm)

c) Từ (1) ta được;

AD/BC = DB/CD = AB/BD hay 3.5/7 = 5/10 = 2,5/5 = 1/2 .

ta nói tam giác ADB đồng giạc với tam giác BCD theo tỉ số đồng dạng là 1/2

mà tỉ số diện tích bằng bình phương tỉ số động dạng

do đó S ADB/ S BCD = (1/2)^2 = 1/4

Bài 22 : 

Vì ABCD là hình bình hành 

=> AB = DC 

Mà M là trung điểm AB 

=> AM = MB 

Mà N là trung điểm DC 

=> DN = NC 

=> AM = DN 

Mà AB//DC 

=> DN//AM 

=> AMND là hình bình hành 

Chứng minh tương tự ta có : MBCN là hình bình hành 

Bài 2: 

a: Xét ΔABE và ΔACF có

góc ABE=góc ACF

AB=AC

góc A chung

Do đó: ΔABE=ΔACF

Suy ra: AE=AF

b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC

=>BFEC là hình thang

mà CF=BE

nên BFEC là hình thang cân

c: Xét ΔFEB có góc FEB=góc FBE

nên ΔFEB cân tại F

=>FE=FB=EC

2 tháng 9 2016

Bài 1:

Ta có:góc ABD=góc CBD

          góc ECB=góc AEC

Mà góc B = góc C

suy ra góc ABD = góc CBD = góc ECB=gócACE

Ta lại có:góc B = góc C

=> BEDC là hình thang cân=>BC//DE

=>BE=DCvà BD=CE

Mà tam giác ABC cân tại A=>AE=AD

Vì góc DBC= góc EDB(so le trong)

Mà ABD=DBC=>góc ABD= góc DBC=>tam giác EBD cân tai E

=>EB=EDmà EB=DC

=>ED=EB=DC.đpcm

Bài 2:

Ta có :

góc ACD=góc BDC

=>ABCD là HTC(định nghĩa hình thang cân)

 

 

3 tháng 8 2017

bạn LÊ PHI HÙNG cho mình hỏi đpcm là gì v

19 tháng 6 2020

A B E C D 1 1

a) Hình thang ABEC ( AB // CE ) có hai cạnh bên AC, BE song song nên chúng bằng nhau: AC = BE     (1)

Theo giả thiết AC = BD     (2)

Từ (1) và (2) suy ra BE = BD do đó \(\Delta BDE\)cân

b) Do AC // BE nên \(\widehat{E}=\widehat{C_1}\left(3\right)\)

Mà tam giác BDE cân tại B ( câu a ) nên \(\widehat{E}=\widehat{D_1}\left(4\right)\)

Từ (3)(4) => \(\widehat{D_1}=\widehat{C_1}\)

* Xét 2 tam giác : ACD và BDC có :

DC chung

AC = BD ( gt )

\(\widehat{C_1}=\widehat{D_1}\left(cmt\right)\)

\(\Rightarrow\Delta ACD=\Delta BDC\left(c-g-c\right)\)

c) Theo ( c/m câu b ) ta có :

\(\Delta ACD=\Delta BDC\)

nên \(\widehat{ADC}=\widehat{BCD}\)( 2 góc tương ứng )

Vậy hình thang ABCD có hai góc kề một đáy bằng nhau nên là hình thang cân.

Bài 2: 

a: Xét ΔABE và ΔACF có

góc ABE=góc ACF

AB=AC

góc A chung

Do đó: ΔABE=ΔACF

Suy ra: AE=AF

b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC

=>BFEC là hình thang

mà CF=BE

nên BFEC là hình thang cân

c: Xét ΔFEB có góc FEB=góc FBE

nên ΔFEB cân tại F

=>FE=FB=EC

21 tháng 4 2017

Bài giải:

Gọi E là giao điểm của AC và BD.

∆ECD có \(\widehat{C_1}=\widehat{D}\) (do \(\widehat{ACD}=\widehat{BDC}\)) nên là tam giác cân.

Suy ra EC = ED (1)

Tương tự EA = EB (2)

Từ (1) và (2) suy ra AC = BD

Hình thang ABCD có hai đường chéo bằng nhau nên là hình thang cân.


24 tháng 6 2017

\(\(\widehat{C_1}\)

18 tháng 8 2018

cho tứ giác abcd có ad=ab=bc và gốc Á+góc C=180.CMR a)tia DB là tia phân giác của góc ADC.b) Tứ giác ABCD là hình thang cân

19 tháng 9 2020

a,   Xet tu giac ABCD co \(\widehat{BAC}+\widehat{BCD}=180° \)→Tu giac ABCD la tu giac noi tiep\(→\hept{\begin{cases}\widehat{CAB}=\widehat{BDC}\\\widehat{ADB}=\widehat{ACB}\end{cases}}\)

Mat khac do AB=BC nen tam giac ABC can suy ra    \(\widehat{CAB}=\widehat{ACB}\)

  Tu day ta co  \(\widehat{BCD}=\widehat{ADB}\)hay DB la phan giac cua    \(\widehat{ADC}\)