Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
Xet ΔOAE và ΔOCF có
góc OAE=góc OCF
góc AOE=góc COF
=>ΔOAE đồng dạng với ΔOCF
=>AE/CF=OE/OF
Xét ΔOEB và ΔOFD có
góc OEB=góc OFD
góc EOB=góc FOD
=>ΔOEB đồng dạng với ΔOFD
=>EB/FD=OE/OF=AE/CF
mà CF=DF
nên EB=AE
=>E là trung điểm của BA
đề bài: cho hình thanh ABCD (AB//CD). Gọi I là giao điểm của 2 đg chéo AC và BD. Vẽ qua I đường thẳng song song với AB và BC, cắt AD, BC lần lượt tại E,F. chứng minh:
....
bn tự kẻ hình nha :)
a) Xét tg ACD, có: EI // DC
\(\Rightarrow\frac{EI}{DC}=\frac{AI}{AC}\)(1)
Xét tg BCD, có: FI // DC
\(\Rightarrow\frac{FI}{DC}=\frac{IB}{BD}\)(2)
Xét tg ABI, có: AB // CD
\(\Rightarrow\frac{AI}{AC}=\frac{IB}{BD}\) (3)
Từ (1);(2);(3) \(\Rightarrow\frac{IE}{DC}=\frac{IF}{DC}\Rightarrow IE=IF\)
b) Xét tg ACD, EI // DC
=> EI/DC = AE/ AD (1)
Xét tg ADB, EI // AB
=> EI/AB = DE/AD (2)
Từ (1);(2) => \(\frac{EI}{DC}+\frac{EI}{AB}=\frac{AE}{AD}+\frac{DE}{AD}=1\)
\(\Rightarrow EI.\left(\frac{1}{DC}+\frac{1}{AB}\right)=1\Rightarrow\frac{1}{EI}=\frac{1}{DC}+\frac{1}{AB}\)
cmtt, t/có: \(\frac{1}{FI}=\frac{1}{DC}+\frac{1}{AB}\)
\(\Rightarrow\frac{1}{EI}=\frac{1}{FI}=\frac{1+1}{EI+FI}=\frac{2}{EF}=\frac{1}{AB}+\frac{1}{CD}\)
ta có : AB// MC (DO AB//DC)
nên \(\frac{BF}{FM}\)=\(\frac{AB}{MC}\)(hệ quả định lý Ta-lét )
lại có AB//DM (do AB//DC)
nên\(\frac{AE}{EM}\)=\(\frac{AB}{DM}\)(hệ qyar định lý Ta- lét)
mà DM=MC (M là trung điểm của DC)
Do đó \(\frac{AM}{DM}\)=\(\frac{AB}{MC}\) suy ra \(\frac{AE}{EM}\)=\(\frac{BF}{FM}\)\(\Rightarrow\)AB//EF(định lý Ta-lét)
c, ta có IE//DM(do EF//DC)
Nên \(\frac{IE}{DM}\)=\(\frac{AE}{AM}\)(hệ quả đl Ta-lét) (1)
lại có EF//DC (CMT)
Nên \(\frac{EF}{DM}\)=\(\frac{BF}{MB}\)(hệ quả) (2)
ta có: FK//MC(do EF//DC)
nên \(\frac{FK}{MC}\)=\(\frac{BF}{BM}\)(HỆ QUẢ) (3)
Mà \(\frac{AE}{AM}\)=\(\frac{BF}{BM}\)(CMT) (4)
từ 1,2,3,4 suy ra: IE=EF=FK (đpcm)
có m là trđ của cd rồi lại còn ef cắt bc tại m
a, xét tam giác DEM có AB // DM (gt) => ME/AE = DM/AB (ddl)
xét tam giác MFC có MC // AB (gt) => MF/FB = CM/AB (đl)
có DM = CM do M là trung điểm của CD (gt)
=> ME/AE = MF/FB xét tam giác ABM
=> EF // AB (đl)
b, gọi EF cắt AD;BC lần lượt tại P và Q
xét tam giác ABD có PE // AB => PE/AB = DE/DB (đl)
xét tam giác DEM có DM // AB => DE/DB = ME/MA (đl)
xét tam giác ABM có EF // AB => EF/AB = ME/MA (đl)
=> PE/AB = EF/AB
=> PE = EF
tương tự cm được FQ = EF
=> PE = EF = FQ
c, Xét tam giác DAB có PE // AB => PE/AB = DP/DA (đl)
xét tam giác ADM có PE // DM => PE/DM = AP/AD (đl)
=> PE/AB + PE/DM = DP/AD + AP/AD
=> PE(1/AB + 1/DM) = 1 (1)
xét tam giác AMB có EF // AB => EF/AB = MF/MB (đl)
xét tam giác BDM có EF // DM => EF/DM = BF/BM (đl)
=> EF/AB + EF/DM = MF/MB + BF/BM
=> EF(1/AB + 1/DM) = 1 (2)
xét tam giác ABC có FQ // AB => FQ/AB = CQ/BC (đl)
xét tam giác BMC có FQ // MC => FQ/MC = BQ/BC (đl)
=> FQ/AB + FQ/MC = CQ/BC + BQ/BC
có MC = DM (câu a)
=> FQ(1/AB + 1/DM) = 1 (3)
(1)(2)(3) => (1/AB + 1/DM)(PE + EF + FQ) = 3
=> PQ(1/AB + 1/DM) = 3
DM = 1/2 CD = 6
đến đây thay vào là ok
A B C a O E F D
a, xét tam giác ABD có : EO // AB (Gt)
=> EO/AB = DO/DB (hệ quả) (1)
xét tam giác ABC có : OF // AB (gt)
=> OF/AB = OC/CA (hệ quả) (2)
xét tam giác ODC có : AB // DC (gt)
=> DO/DB = OC/CA (hệ quả) (3)
(1)(2)(3) => OE = OF
b, xét tam giác ABD có EO // AB (gt)
=> EO/AB = DE/AD (hệ quả) (4)
xét tam giác ACD có : EO // DC
=> EO/DC = EA/AD (hệ quả) (5)
(4)(5) => EO/AB + EO/DC = DE/AD + EA/AD
=> EO(1/AB + 1/BC) = AD/AD = 1 (*)
xét tam giác ACB có : FO // AB
=> OF/AB = FC/BC (hệ quả) (6)
xét tam giác BDC có : OF // DC
=> OF/DC = BF/BC (hệ quả) (7)
(6)(7) => OF/AB + OF/DC = FC/BC + BF/BC
=> OF(1/AB + 1/DC) = BC/BC = 1 (**)
(*)(**) => OF(1/AB + 1/CD) + OE(1/AB + 1/DC) = 2
=> (OF + OE)(1/AB + 1/DC) = 2
có OF + OE = EF
=> 1/AB + 1/DC = 2/EF