Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Gọi $I$ là tâm đường tròn. Vì $I$ nằm trên đt \(\Delta: 3x-y+7=0\) nên $I$ có tọa độ $(a,3a+7)$
Đường tròn tiếp xúc với trục Ox nên:
\(d(I,Ox)=R=1\Leftrightarrow |3a+7|=1\Rightarrow \left[\begin{matrix} a=-2\\ a=\frac{-8}{3}\end{matrix}\right.\)
Nếu \(a=-2\Rightarrow I(-2, 1)\). PTĐTr là:
\((x+2)^2+(y-1)^2=1\)
Nếu \(a=-\frac{8}{3}\Rightarrow I(\frac{-8}{3}, -1)\). PTĐTr là:
\((x+\frac{8}{3})^2+(y+1)^2=1\)
Bài 2:
Ta viết lại pt đường tròn:
\(x^2+y^2-2x-4y-4=0\)
\(\Leftrightarrow (x-1)^2+(y-2)^2-9=0\)
\(\Leftrightarrow (x-1)^2+(y-2)^2=9\)
Vậy đường tròn $(C)$ có tâm $I(1,2)$ và bán kính $R=3$
Có : \(d(I,(d))=\frac{|3x_I+4y_I+4|}{\sqrt{3^2+4^2}}=\frac{|3.1+4.2+4|}{5}=3=R_{(C)}\)
Do đó đường thẳng (d) tiếp xúc với đường tròn $(C)$
Câu 3:
Chắc pt đường tròn là \(\left(x-2\right)^2+\left(y+\frac{3}{2}\right)^2=25\)
Gọi d là đường thẳng qua M. Đường tròn tâm \(I\left(2;-\frac{3}{2}\right)\)
Áp dụng định lý Pitago:
\(d\left(I;d\right)=\sqrt{5^2-\left(\frac{8}{2}\right)^2}=3\)
Phương trình d qua M có dạng:
\(a\left(x+1\right)+b\left(y-3\right)=0\Leftrightarrow ax+by+a-3b=0\)
Theo công thức khoảng cách:
\(d\left(I;d\right)=\frac{\left|2a-\frac{3}{2}b+a-3b\right|}{\sqrt{a^2+b^2}}=3\Leftrightarrow\left|2a-3b\right|=2\sqrt{a^2+b^2}\)
\(\Leftrightarrow\left(2a-3b\right)^2=4\left(a^2+b^2\right)\Leftrightarrow5b^2-12ab=0\)
\(\Rightarrow\left[{}\begin{matrix}b=0\\5b=12a\end{matrix}\right.\)
Chọn \(b=12\Rightarrow a=5\)
Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}x+1=0\\5x+12y-31=0\end{matrix}\right.\)
Câu 2:
Gọi M là giao điểm \(d_1;d_2\Rightarrow\) tọa độ M là nghiệm:
\(\left\{{}\begin{matrix}x+y-2=0\\-x+y-3=0\end{matrix}\right.\) \(\Rightarrow M\left(-\frac{1}{2};\frac{5}{2}\right)\)
Do \(d_1\) có hệ số góc \(-1\Rightarrow d_1\) tạo với chiều âm trục Ox 1 góc 45 độ
\(d_2\) có hệ số góc \(1\Rightarrow d_2\) tạo với chiều dương trục Ox 1 góc \(45^0\)
Mà \(\overrightarrow{n_{d1}}.\overrightarrow{n_{d2}}=0\Rightarrow d_1\perp d_2\)
\(\Rightarrow\) 3 giao điểm của \(d_1;d_2;Ox\) tạo thành một tam giác vuông cân tại M
\(\Rightarrow\) hai đường phân giác góc tạo bởi \(d_1\) và \(d_2\) lần lượt vuông góc với Ox và Oy
\(\Rightarrow\) Hai đường phân giác góc tạo bởi d1 và d2 lần lượt có pt là \(\left[{}\begin{matrix}x=-\frac{1}{2}\\y=\frac{5}{2}\end{matrix}\right.\)
- TH1: tâm I của đường tròn nằm trên \(x=-\frac{1}{2}\Rightarrow I\left(-\frac{1}{2};b\right)\)
\(\Rightarrow\overrightarrow{IA}=\left(\frac{3}{2};-b\right)\Rightarrow R^2=IA^2=b^2+\frac{9}{4}\)
Mặt khác theo công thức khoảng cách:
\(d\left(I;d_1\right)=R\Rightarrow\frac{\left|-\frac{1}{2}+b-2\right|}{\sqrt{2}}=R\Rightarrow\frac{\left(b-\frac{5}{2}\right)^2}{2}=R^2\)
\(\Rightarrow b^2+\frac{9}{4}=\frac{\left(b-\frac{5}{2}\right)^2}{2}\Leftrightarrow2b^2+\frac{9}{2}-\left(b-\frac{5}{2}\right)^2=0\)
Nghiệm lại xấu nữa, bạn tự giải tiếp
TH2: tâm I của đường tròn nằm trên \(y=\frac{5}{2}\Rightarrow I\left(a;\frac{5}{2}\right)\) làm tương tự TH1
Bài 2:
Đường tròn \(\left(C_1\right)\) tâm \(\left(1;2\right)\) bán kính \(R=2\)
a/ Không hiểu đề bài, bạn ghi rõ thêm ra được chứ?
Tiếp tuyến đi qua giao điểm của \(\Delta_1;\Delta_2\) hay tiếp tuyến tại các giao điểm của \(\Delta_1\) và \(\Delta_2\) với đường tròn?
b/ Lại không hiểu đề nữa, điểm I trong tam giác \(IAB\) đó là điểm nào vậy bạn?
Bài 1b/
\(\Delta'\) nhận \(\left(2;1\right)\) là 1 vtpt
Gọi vtpt của d' có dạng \(\left(a;b\right)\Rightarrow\frac{\left|2a+b\right|}{\sqrt{2^2+1^2}.\sqrt{a^2+b^2}}=\frac{1}{\sqrt{2}}\)
\(\Leftrightarrow\sqrt{2}\left|2a+b\right|=\sqrt{5\left(a^2+b^2\right)}\Leftrightarrow2\left(2a+b\right)^2=5\left(a^2+b^2\right)\)
\(\Leftrightarrow3a^2+8ab-3b^2=0\Rightarrow\left[{}\begin{matrix}a=-3b\\3a=b\end{matrix}\right.\)
\(\Rightarrow\) d' có 2 vtpt thỏa mãn là \(\left(3;-1\right)\) và \(\left(1;3\right)\)
TH1: d' có pt dạng \(3x-y+c=0\)
\(d\left(I;d'\right)=R\Leftrightarrow\frac{\left|3.1-3+c\right|}{\sqrt{3^2+1^2}}=2\Rightarrow c=\pm2\sqrt{10}\)
\(\Rightarrow\left[{}\begin{matrix}3x-y+2\sqrt{10}=0\\3x-y-2\sqrt{10}=0\end{matrix}\right.\)
TH2: d' có dạng \(x+3y+c=0\)
\(d\left(I;d'\right)=R\Leftrightarrow\frac{\left|1+3.3+c\right|}{\sqrt{10}}=2\Leftrightarrow\left|c+10\right|=2\sqrt{10}\Rightarrow c=-10\pm2\sqrt{10}\)
\(\Rightarrow\left[{}\begin{matrix}x+3y-10+2\sqrt{10}=0\\x+3y-10-2\sqrt{10}=0\end{matrix}\right.\)
Viết lại pt (C):
\(\left(x-1\right)^2+\left(y-m\right)^2=25\) \(\Rightarrow\left\{{}\begin{matrix}I\left(1;m\right)\\R=5\end{matrix}\right.\)
Ý bạn là tam giác ABI? Không thấy C nào ở đây
Đặt \(d\left(I;AB\right)=k\)
Ta có \(S_{ABI}=\frac{1}{2}AB.d\left(I;AB\right)=\frac{AB}{2}.k=\sqrt{R^2-k^2}.k=12\)
\(\Rightarrow k^2\left(R^2-k^2\right)=144\Rightarrow k^4-25k^2+144=0\Rightarrow\left[{}\begin{matrix}k^2=16\\k^2=9\end{matrix}\right.\)
Áp dụng công thức khoảng cách:
\(d\left(I;AB\right)=\frac{\left|m+4m\right|}{\sqrt{m^2+16}}=k\Leftrightarrow\left|5m\right|=k\sqrt{m^2+16}\)
\(\Leftrightarrow25m^2=k^2m^2+16k^2\)
- Với \(k^2=16\Rightarrow25m^2=16m^2+16^2\Rightarrow m^2=\left(\frac{16}{9}\right)^2\Rightarrow m=\pm\frac{16}{9}\)
- Với \(k^2=9\Rightarrow25m^2=9m^2+144\Rightarrow16m^2=144\Rightarrow m=\pm3\)