K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

NV
3 tháng 5 2019

Bài 1:

\(2c=8\Rightarrow c=4\)

Gọi phương trình (E) có dạng \(\frac{x^2}{a^2}+\frac{y^2}{a^2-16}=1\)

Do A thuộc (E) nên \(\frac{0}{a^2}+\frac{9}{a^2-16}=1\Rightarrow a^2=25\)

Phương trình (E): \(\frac{x^2}{25}+\frac{y^2}{9}=1\)

Bài 2:

\(2a=10\Rightarrow a=5\)

\(e=\frac{c}{a}\Rightarrow c=e.a=\frac{3}{5}.5=3\)

Phương trình elip:

\(\frac{x^2}{25}+\frac{y^2}{16}=1\)

NV
3 tháng 5 2019

Câu 3:

\(x-2y+3=0\Rightarrow x=2y-3\)

Thay vào pt đường tròn ta được:

\(\left(2y-3\right)^2+y^2-2\left(2y-3\right)-4y=0\)

\(\Leftrightarrow5y^2-20y+15=0\)

\(\Rightarrow\left[{}\begin{matrix}y=1\Rightarrow x=-1\\y=3\Rightarrow x=3\end{matrix}\right.\)

Tọa độ 2 giao điểm: \(A\left(-1;1\right)\)\(B\left(3;3\right)\)

Câu 4:

Gọi d' là đường thẳng song song với d \(\Rightarrow\) pt d' có dạng \(x-y+c=0\)

Do d' tiếp xúc với (C) nên \(d\left(I;d'\right)=R\)

\(\Rightarrow\frac{\left|0.1-0.1+c\right|}{\sqrt{1^2+1^2}}=\sqrt{2}\Rightarrow\left|c\right|=2\Rightarrow c=\pm2\)

Có 2 pt đường thẳng thỏa mãn: \(\left[{}\begin{matrix}x-y+2=0\\x-y-2=0\end{matrix}\right.\)

NV
25 tháng 4 2020

Bài 2:

Đường tròn \(\left(C_1\right)\) tâm \(\left(1;2\right)\) bán kính \(R=2\)

a/ Không hiểu đề bài, bạn ghi rõ thêm ra được chứ?

Tiếp tuyến đi qua giao điểm của \(\Delta_1;\Delta_2\) hay tiếp tuyến tại các giao điểm của \(\Delta_1\)\(\Delta_2\) với đường tròn?

b/ Lại không hiểu đề nữa, điểm I trong tam giác \(IAB\) đó là điểm nào vậy bạn?

NV
25 tháng 4 2020

Bài 1b/

\(\Delta'\) nhận \(\left(2;1\right)\) là 1 vtpt

Gọi vtpt của d' có dạng \(\left(a;b\right)\Rightarrow\frac{\left|2a+b\right|}{\sqrt{2^2+1^2}.\sqrt{a^2+b^2}}=\frac{1}{\sqrt{2}}\)

\(\Leftrightarrow\sqrt{2}\left|2a+b\right|=\sqrt{5\left(a^2+b^2\right)}\Leftrightarrow2\left(2a+b\right)^2=5\left(a^2+b^2\right)\)

\(\Leftrightarrow3a^2+8ab-3b^2=0\Rightarrow\left[{}\begin{matrix}a=-3b\\3a=b\end{matrix}\right.\)

\(\Rightarrow\) d' có 2 vtpt thỏa mãn là \(\left(3;-1\right)\)\(\left(1;3\right)\)

TH1: d' có pt dạng \(3x-y+c=0\)

\(d\left(I;d'\right)=R\Leftrightarrow\frac{\left|3.1-3+c\right|}{\sqrt{3^2+1^2}}=2\Rightarrow c=\pm2\sqrt{10}\)

\(\Rightarrow\left[{}\begin{matrix}3x-y+2\sqrt{10}=0\\3x-y-2\sqrt{10}=0\end{matrix}\right.\)

TH2: d' có dạng \(x+3y+c=0\)

\(d\left(I;d'\right)=R\Leftrightarrow\frac{\left|1+3.3+c\right|}{\sqrt{10}}=2\Leftrightarrow\left|c+10\right|=2\sqrt{10}\Rightarrow c=-10\pm2\sqrt{10}\)

\(\Rightarrow\left[{}\begin{matrix}x+3y-10+2\sqrt{10}=0\\x+3y-10-2\sqrt{10}=0\end{matrix}\right.\)

Bài 1: Cho đường tròn (I; R) nội tiếp tam giác ABC tiếp xúc với BC tại D. Gọi M và N lần lượt là trung điểm của AD và BC. Chứng minh M, I, N thẳng hàng Bài 2: cho đường tròn tâm O và 3 dây cung song song với nhau là AA', BB', CC'. Chứng minh rằng trực tâm các tam giác ABC'; BCA' và CAB' cùng nằm trên 1 đường thẳng Bài 3: Trên đường thẳng a cho các điểm A, B, C và trên đường thẳng b cho M, N, P thỏa mãn...
Đọc tiếp

Bài 1: Cho đường tròn (I; R) nội tiếp tam giác ABC tiếp xúc với BC tại D. Gọi M và N lần lượt là trung điểm của AD và BC. Chứng minh M, I, N thẳng hàng

Bài 2: cho đường tròn tâm O và 3 dây cung song song với nhau là AA', BB', CC'. Chứng minh rằng trực tâm các tam giác ABC'; BCA' và CAB' cùng nằm trên 1 đường thẳng

Bài 3: Trên đường thẳng a cho các điểm A, B, C và trên đường thẳng b cho M, N, P thỏa mãn vectoAB=k. vectoAC và vectoMN=k. vectoMP (k khác 1). Giả sử X, Y, Z là các điểm chia các đoạn thẳng AM, BN và CP theo cùng 1 tỉ số. CMR: X, Y, Z thẳng hàng

Bài 4: Cho góc xOy và 2 điểm M, N di chuyển trên 2 cạnh Ox, Oy thỏa mãn OM=2ON.
a)) CMR: trung điểm I của MN luôn thuộc 1 đường thẳng cố định
b)) Nghiên cứu trường hợp giả thiết thay OM=2ON thành OM=mON với m là 1 hằng số cố định
c)) Nghiên cứu trường hợp thay giả thiết I là trung điểm MN thành giả thiết I là điểm chia MN theo tỉ số k cố định. (toán lớp 10 ạ)

0
20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

9 tháng 6 2022

bvtiv

CHỦ ĐỀ PHƯƠNG TRÌNH ĐƯỜNG THẲNG Bài 1) Viết PTTQ của đường thẳng d a) Qua M(-1;-4) và song song với đường thẳng 3x+5y-2=0 b) Qua N(1;1) và vuông góc với đường thẳng 2x+3y+7=0 Bài 2) Viết PT đường thẳng đi qua M(2;5) và cách đều hai điểm P(-1;2),Q(5;4) Bài 3) Cho đường thằng d1: 2x-y-2=0 ; d2: x+y+3=0 và điểm M(3;0). Viết phương trình đường thẳng D đi qua M, cắt d1 và d2 lần lượt tại điểm A và B...
Đọc tiếp

CHỦ ĐỀ PHƯƠNG TRÌNH ĐƯỜNG THẲNG

Bài 1) Viết PTTQ của đường thẳng d

a) Qua M(-1;-4) và song song với đường thẳng 3x+5y-2=0

b) Qua N(1;1) và vuông góc với đường thẳng 2x+3y+7=0

Bài 2) Viết PT đường thẳng đi qua M(2;5) và cách đều hai điểm P(-1;2),Q(5;4)

Bài 3) Cho đường thằng d1: 2x-y-2=0 ; d2: x+y+3=0 và điểm M(3;0). Viết phương trình đường thẳng D đi qua M, cắt d1 và d2 lần lượt tại điểm A và B sao cho M là trung điểm của đoạn thẳng AB.

Bài 4) Cho tam giác ABC biết A(2;1) B(-1;0) C(0;3)

a) Viết PTTQ của đường cao AH

b)Viết PTTQ của đường trung trực của đoạn thẳng AB

c) Viết PTTQ của đường thẳng BC

d) Viết PTTQ của đường thẳng qua A và song song với đường thẳng BC

Bài 5) Trong mặt phẳng với hệ tọa độ Oxy, viết phương trình đường thẳng \(\Delta\) song song với đường thẳng d: 3x-4y+1=0 và cách d một khoảng bằng 1

Bài 6) Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC biết phương trình cạnh BC: x-2y+5=0, phương trình đường trung tuyến BB': y-2=0 và phương trình đường trung tuyến CC': 2x-y-2=0. Tìm tọa độ các đỉnh của tam giác.

Bài 7) Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thằng d1: x-y-4=0 , d2: 2x=y-2=0 và 2 điểm A(7;5) B(2;3). Tìm điểm C trên đường thẳng d1 và điểm D trên đường thằng d2 sao cho tứ giác ABCD là hình bình hành.

Bài 8) Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có điểm I(6;2) là giao điểm của hai đường chéo AC và BD. Điểm M(1;5) thuộc đường thẳng AB và trung điểm A của cạnh CD thuộc đường thằng d: x+y-5=0. Viết phương trình đường thẳng AB.

CHỦ ĐỀ ĐƯỜNG TRÒN:

Bài 9) Trong mặt phẳng với hệ tọa độ Oxy, cho đường thằng d: 2x-y-5=0 và hai điểm A(1;2) B(4;1). Viết phương trình đường tròn (C) có tâm thuộc d và đi qua hai điểm A,B

Bài 10) Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thẳng d1: x+3y+8=0, d2: 3x-y+10=0 và điểm A(-2;1). Viết phương trình đường tròn (C) có tâm thuộc d1 đi qua điểm A và tiếp xúc với d2

Bài 11) Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm A(-1;1) B(3;3) và đường thẳng d: 3x-y+8=0. Viết phương trình đường tròn (C) đi qua hai điểm A,B và tiếp xúc với d

Bài 12) Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thẳng d: x+2y-3=0 và \(\Delta\): x+3y-5=0. Viết phương trình đường tròn (C) có bán kính bằng \(\frac{2\sqrt{10}}{5}\), có tâm thuộc d và tiếp xúc với \(\Delta\)

Bài 13) Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C): \(\left(x-1\right)^2+\left(y-2\right)^2=8\)

a) Viết phương trình tiếp tuyến của đường tròn (C) tại điểm A(3;-4)

b) Viết phương trình tiếp tuyến của đường tròn (C) đi qua điểm B(5;-2)

c) Viết phương trình tiếp tuyến của đường tròn (C), biết tiếp tuyến vuông góc với đường thẳng d: x+y+2014=0

d) Viết phương trình tiếp tuyến của đường tròn (C), biết tiếp tuyến tạo với trục tung một góc 45 độ

CHỦ ĐỀ ELIP

Bài 14) Xác định các đỉnh, độ dài các trục, tiêu cự, tiêu điểm, tâm sai của elip có phương trình sau:

a) \(\frac{x^2}{2}+\frac{y^2}{2}=1\)

b) \(4x^2+25y^2=100\)

Bài 15) Lập phương trình chính tắc của Elip, biết

a) Elip đi qua điểm M\(\left(2;\frac{5}{3}\right)\) và có một tiêu điểm F1(-2;0)

b) Elip nhận F2(5;0) là một tiêu điểm và có độ dài trục nhỏ bằng \(4\sqrt{6}\)

c) Elip có độ dài trục lớn bằng \(2\sqrt{5}\) và tiêu cự bằng 2.

d) Elip đi qua hai điểm M(2;\(-\sqrt{2}\)) và N\(\left(-\sqrt{6};1\right)\)

Bài 16) Lập phương trình chính tắc của Elip, biết:

a) Elip có tổng độ dài hai trục bằng 8 và tâm sai \(e=\frac{1}{\sqrt{2}}\)

b) Elip có tâm sai \(e=\frac{\sqrt{5}}{3}\) và hình chữ nhật cơ sở có chu vi bằng 20.

c) Elip có tiêu điểm F1(-2;0) và hình chữ nhật cơ sở có diện tích bằng \(12\sqrt{5}\)

1
30 tháng 4 2019

Mọi người help mình với. Sắp thi học kì rồi

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

31 tháng 5 2017

a) Đường tròn (T) có tâm là điểm (2 ; 1) và có bán kính bằng \(\sqrt 2\)

b) \(-3\le m\le1\)

c) Có hai tiếp tuyến với (T) thỏa mãn đề bài là :

\({\Delta _1}:x + y - 1 = 0\)

\({\Delta _2}:x + y - 5 = 0\)

NV
25 tháng 4 2020

Bài 2:

Đường tròn (C) tâm \(I\left(-2;-\frac{7}{2}\right)\) bán kính \(R=\frac{\sqrt{133}}{2}\)

Sao số xấu dữ vậy ta? Số to như vầy tính toán mệt lắm

Gọi tiếp tuyến d của đường tròn có dạng:

\(a\left(x-2\right)+b\left(y-6\right)=0\Leftrightarrow ax+by-2a-6b=0\)

d tiếp xúc (C) \(\Leftrightarrow d\left(I;d\right)=R\)

\(\Leftrightarrow\frac{\left|-2a-\frac{7}{2}b-2a-6b\right|}{\sqrt{a^2+b^2}}=\frac{\sqrt{133}}{2}\)

\(\Leftrightarrow\left|6a+19b\right|=\sqrt{133\left(a^2+b^2\right)}\)

\(\Leftrightarrow97a^2-228ab-288b^2=0\)

Chắc bạn ghi sai đề thật, nghiệm pt này xấu hủy hoại, chắc chẳng ai cho đề kiểu như vầy hết

NV
25 tháng 4 2020

Bài 1:

Gọi d' là đường thẳng qua A và vuông góc d

Phương trình d':

\(4\left(x-1\right)+3\left(y+7\right)=0\Leftrightarrow4x+3y+17=0\)

Tâm của (C) nằm trên d' nên tọa độ có dạng \(I\left(a;\frac{-4a-17}{3}\right)\Rightarrow\overrightarrow{AI}=\left(a-1;\frac{4-4a}{3}\right)\)

\(IA^2=R^2\Leftrightarrow\left(a-1\right)^2+\left(\frac{4-4a}{3}\right)^2=25\)

\(\Rightarrow\left(a-1\right)^2=9\Rightarrow\left[{}\begin{matrix}a=4\\a=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}I\left(4;-11\right)\\I\left(-2;-3\right)\end{matrix}\right.\)

Có 2 đường tròn thỏa mãn:

\(\left[{}\begin{matrix}\left(x-4\right)^2+\left(y+11\right)^2=25\\\left(x+2\right)^2+\left(y+3\right)^2=25\end{matrix}\right.\)