K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

Xét ΔABC có AD là đường phân giác ứng với cạnh BC

nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)

\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{1}{3}\)

\(\Leftrightarrow\dfrac{BH}{CH}=\dfrac{1}{9}\)

6 tháng 10 2021

cảm ơn nhiều ạ

3 tháng 9 2020

Hình vẽ chung cho cả ba bài.

Bài 1:

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{15^2}+\frac{1}{20^2}=\frac{1}{144}\)

\(\Rightarrow AH^2=144\Rightarrow AH=12\)

\(BH=\sqrt{AB^2-AH^2}=\sqrt{15^2-12^2}=\sqrt{81}=9\)

\(CH=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=\sqrt{256}=16\)

\(\Rightarrow BC=BH+CH=9+16=25\)

Bài 2,3 bạn nhìn hình vẽ và sử dụng hệ thức lượng để tính tiếp như bài 1.

3 tháng 9 2020

Bài 2:                                                    Bài giải

Đặt BH = x (0 < x < 25) (cm) => CH = 25 - x (cm)

Ta có : \(AH^2=BH\cdot CH\text{ }\Rightarrow\text{ }x\left(25-x\right)=144\text{ }\Rightarrow\text{ }x^2-25x+144=0\)

\(\left(x-9\right)\left(x-16\right)=0\text{ }\Rightarrow\orbr{\begin{cases}x=9\\x=16\end{cases}}\left(tm\right)\)

Nếu BH = 9 cm thì CH = 16 cm \(\Rightarrow\text{ }AB=\sqrt{AH^2+BH^2}=\sqrt{9^2+12^2}=15\text{ }\left(cm\right)\)

\(AC=\sqrt{AH^2+CH^2}=\sqrt{12^2+16^2}=20\text{ }\left(cm\right)\)

Nếu BH = 16 cm thì CH = 9 cm

\(\Rightarrow\text{ }AB=\sqrt{AH^2+BH^2}=\sqrt{12^2+16^2}=20\text{ }\left(cm\right)\)

\(AC=\sqrt{AH^2+CH^2}=\sqrt{9^2+12^2}=15\text{ }\left(cm\right)\)

7 tháng 8 2016

ko ai bít lm lun hã @@

12 tháng 10 2017

đề năm 2016-2017 à bạn 

P/s: mình học THCS Tự Lập- Mê Linh-Hà Nội

14 tháng 10 2017

Đúng rồi.Mình học THCS Kim Hoa nè :v

29 tháng 8 2019

a)Xét tam giác abc vuông tại a 

Ta có : bc² = ab² + ac² ( py-ta-go )

=> bc² = 6² + 8² = 100

=> bc = 10 (cm )

b) Áp dụng hệ thức lượng cho tam giác abc vuông tại a đường cao ah

Ta có : ab² = bh.bc ( bình phương cgv = tích chiếu huyền )

c) ta có ab² = bh.bc ( từ b )

=> bh = ab²/bc = 6²/10 = 3,6 (cm)

Xét tam giác abc, đường phân giác ad

Ta có ab/ac = db/dc

=> 6/(8+6) = db/(dc+db)

=> 6/14 = db/10

=> db = 6/14 .10 = 60/14 = 30/7 (cm)

19 tháng 7 2018

Bài 1:

B A C H D

              \(BC=CD+BD=68+51=119\)

\(AD\)là phân giác  \(\widehat{BAC}\)\(\Rightarrow\)\(\frac{BD}{AB}=\frac{DC}{AC}\)hay     \(\frac{51}{AB}=\frac{68}{AC}\)

\(\Leftrightarrow\)\(\frac{51^2}{AB^2}=\frac{68^2}{AC^2}=\frac{51^2+68^2}{AB^2+AC^2}=\frac{25}{49}\)

suy ra:    \(\frac{51^2}{AB^2}=\frac{25}{49}\)\(\Rightarrow\)\(AB=71,4\)

ÁP dụng hệ thức lượng ta có:

           \(AB^2=BH.BC\)

\(\Leftrightarrow\)\(BH=\frac{AB^2}{BC}=\frac{71,4^2}{119}=42,84\)

\(\Rightarrow\)\(CH=BC-BH=119-42,84=76,16\)

19 tháng 7 2018

Bài 2:

B A C H

Áp dụng Pytago ta có:

     \(AH^2+BH^2=AB^2\)

\(\Leftrightarrow\)\(BH^2=AB^2-AH^2\)

\(\Leftrightarrow\)\(BH^2=7,5^2-6^2=20,25\)

\(\Leftrightarrow\)\(BH=4,5\)

Áp dụng hệ thức lượng ta có:

       \(AB^2=BH.BC\)

\(\Rightarrow\)\(BC=\frac{AB^2}{BH}=\frac{7,5^2}{4,5}=12,5\)

       \(AB.AC=BC.AH\)

\(\Rightarrow\)\(AC=\frac{BC.AH}{AB}=\frac{12,5.6}{7,5}=10\)

b)   \(cosB=\frac{AC}{BC}=\frac{10}{12,5}=0.8\)

      \(cosC=\frac{AB}{BC}=\frac{7,5}{12,5}=0,6\)

16 tháng 8 2016

A B C H

a) Xét hai tam giác vuông : tam giác HBA và tam giác ABC có : 

góc B chung , góc AHB = góc BAC = 90 độ

=> tam giác HBA đồng dạng với tam giác ABC (g.g)

=> \(\frac{BH}{AB}=\frac{AB}{BC}\Rightarrow AB^2=BH.BC\)

b) Xét hai tam giác vuông : tam giác HBA và tam giác HAC có :

góc AHB = góc AHC = 90 độ , góc ABH = góc HAC vì cùng phụ với góc BCA

=> tam giác HBA đồng dạng với tam giác HAC

=> \(\frac{BH}{AH}=\frac{AH}{CH}\Rightarrow AH^2=BH.CH\)

c) Ta có : \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}BC.AH\Rightarrow AB.AC=BC.AH\)

\(\Rightarrow\left(AB.AC\right)^2=\left(BC.AH\right)^2\Leftrightarrow\frac{1}{AH^2}=\frac{BC^2}{AB^2.AC^2}=\frac{AB^2+AC^2}{AB^2.AC^2}\)

\(\Rightarrow\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)

b) Định lí PYTAGO cho tam giác AHM vuông tại H: \(AM^2=AH^2+HM^2\Rightarrow AH^2=AM^2-HM^2\)

M trung điểm HC \(\Rightarrow HM=MC\Rightarrow AH^2=AM^2-MC^2\)(1)

Định lí PYTAGO cho 2 tam giác AMI và CMI đều vuông tại I: \(\hept{\begin{cases}AM^2=AI^2+MI^2\\MC^2=MI^2+IC^2\end{cases}}\)

Thế vào (1) \(\Rightarrow AH^2=\left(AI^2+MI^2\right)-\left(MI^2+IC^2\right)=AI^2-IC^2\)