Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1)\)
\(a,2x^3-6x^2=2x^2.\left(x-3\right)\)
\(b,6x-6y-x^2+xy=6.\left(x-y\right)-x.\left(x-y\right)=\left(x-y\right).\left(6-x\right)\)
\(2)\)
\(a,ĐKXĐ:x\ne0;x\ne1\)
\(b,B=\left(\frac{2}{x\left(1-x\right)}-\frac{1}{1-x}\right):\frac{2-x}{1-2x+x^2}\)
\(B=\left(\frac{2}{x\left(1-x\right)}-\frac{x}{x\left(1-x\right)}\right):\frac{2-x}{\left(1-x\right)^2}\)
\(B=\frac{2-x}{x\left(1-x\right)}.\frac{\left(1-x\right)^2}{2-x}\)
\(B=\frac{1-x}{x}\)
\(c,\)Thay x=-2014 vào B ta có :
\(B=\frac{-2014-1}{-2014}=\frac{2015}{2014}\)
a) x2 - 5x - y2 -5y
= ( x2 - y2 ) + ( -5x - 5y)
= ( x - y ) ( x + y) - 5( x + y )
= ( x + y ) ( x - y -5)
b) x3 + 2x2 - 4x - 8
= x2 ( x + 2 ) - 4 ( x + 2 )
= ( x +2 ) ( x2 -4 )
= ( x+2)2 ( x-2)
Bai 2 :
a, \(A=\left(x+3\right)^2+\left(x-2\right)^2-2\left(x+3\right)\left(x-2\right)\)
\(=x^2+6x+9+x^2-4x+4-2\left(x^2-2x+3x-6\right)\)
\(=2x^2+2x+13-2x^2-2x+12=25\)
b, \(B=\left(x-2\right)^2-x\left(x-1\right)\left(x-3\right)+3x^2-9x+8\)
\(=x^2-4x+4-x\left(x^2-3x-x+3\right)+3x^2-9x+8\)
\(=4x^2-13x+12-x^3+4x^2-3x=-16x+12-x^3\)
a)\(A=\frac{\left(x+2\right)}{\left(x+3\right)}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\)
A xác định
\(\Leftrightarrow\hept{\begin{cases}x+3\ne0\\x^2+x-6\ne0\\2-x\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne-3\\\left(x+3\right)\left(x-2\right)\ne0\\x\ne2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne-3\\x\ne2\end{cases}}\)
Vậy A xác định \(\Leftrightarrow\hept{\begin{cases}x\ne-3\\x\ne2\end{cases}}\)
b) \(A=\frac{\left(x+2\right)}{\left(x+3\right)}-\frac{5}{\left(x^2-2x\right)+\left(3x-6\right)}+\frac{1}{2-x}\)
\(A=\frac{\left(x+2\right)}{\left(x+3\right)}-\frac{5}{x.\left(x-2\right)+3.\left(x-2\right)}+\frac{1}{2-x}\)
\(A=\frac{\left(x+2\right)}{\left(x+3\right)}-\frac{5}{\left(x-2\right)\left(x+3\right)}+\frac{1}{2-x}\)
\(A=\frac{\left(x+2\right)}{\left(x+3\right)}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{1}{x-2}\)
\(A=\frac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}\)
\(A=\frac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}\)
\(A=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}\)
\(A=\frac{\left(x^2+3x\right)-\left(4x+12\right)}{\left(x+3\right)\left(x-2\right)}\)
\(A=\frac{x.\left(x+3\right)-4.\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}\)
\(A=\frac{\left(x+3\right)\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}\)
\(A=\frac{x-4}{x-2}\left(x+3\ne0\right)\)
c) \(A=-\frac{3}{4}\)
\(\Leftrightarrow\frac{x-4}{x-2}=-\frac{3}{4}\)
\(\Leftrightarrow4.\left(x-4\right)=-3.\left(x-2\right)\)
\(\Leftrightarrow4x-16=-3x+6\)
\(\Leftrightarrow7x=22\)
\(\Leftrightarrow x=\frac{22}{7}\)
Vậy \(x=\frac{22}{7}\)
Tham khảo nhé~
a, ĐKXĐ: \(x\ne0;x\ne\pm1\)
\(P=\left(\frac{2x}{x^2-1}+\frac{x-1}{2x+2}\right):\frac{x+1}{2x}=\left(\frac{2x}{\left(x-1\right)\left(x+1\right)}+\frac{x-1}{2\left(x+1\right)}\right):\frac{x+1}{2x}\)
\(=\left(\frac{2x.2}{2\left(x-1\right)\left(x+1\right)}+\frac{\left(x-1\right)^2}{2\left(x-1\right)\left(x+1\right)}\right):\frac{x+1}{2x}\)
\(=\frac{4x+x^2-2x+1}{2\left(x-1\right)\left(x+1\right)}:\frac{x+1}{2x}=\frac{x^2+2x+1}{2\left(x-1\right)\left(x+1\right)}=\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}\cdot\frac{2x}{x+1}=\frac{x}{x-1}\)
b,Để \(P=2\Leftrightarrow\frac{x}{x-1}=2\Leftrightarrow2\left(x-1\right)=x\Leftrightarrow2x-2-x=0\Leftrightarrow x-2=0\Leftrightarrow x=2\left(tmđk\right)\)
Vậy để P=2 <=> x=2
Bài 4:
\(b,\dfrac{\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}}{1+\dfrac{x^3}{1-x^3}}\)
\(=\dfrac{\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}}{\dfrac{1-x^3}{1-x^3}+\dfrac{x^3}{1-x^3}}\)
\(=\dfrac{\dfrac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}}{\dfrac{1-x^3+x^3}{1-x^3}}\)
\(=\dfrac{4x}{\left(x-1\right)\left(x+1\right)}:\dfrac{1}{\left(1-x\right)\left(1+x+x^2\right)}\)
\(=\dfrac{4x}{\left(x-1\right)\left(x+1\right)}:\dfrac{-1}{\left(x-1\right)\left(1+x+x^2\right)}\)
\(=\dfrac{4x}{\left(x-1\right)\left(x+1\right)}.\left[-\left(x-1\right)\left(x^2+x+1\right)\right]\)
\(=\dfrac{-4x\left(x^2+x+1\right)}{x+1}\)