Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tk mình đi mọi người mình bị âm nè!
Ai tk mình mình tk lại cho
Đặt a=xy,b=yz,c=zx
Ta có: \(x^3y^3+y^3z^3+x^3z^3=3x^2y^2z^2\Rightarrow a^3+b^3+c^3=3abc\Rightarrow\hept{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)
- Nếu a+b+c=0 hay xy+yz+xz=0 thì (x+z)y=-xz
\(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{x}\right)\left(1+\frac{z}{x}\right)=\left(\frac{x+y}{y}\right)\left(\frac{y+z}{z}\right)\left(\frac{z+x}{x}\right)=\frac{\left(x+y\right)z}{yz}.\frac{\left(y+z\right)x}{zx}.\frac{\left(x+z\right)y}{xy}\)
\(=\frac{\left(-xy\right)\left(-yz\right)\left(-zx\right)}{zx.xy.yz}=-1\)
- Nếu a=b=c hay xy=yz=zx =>x=y=z =>B=8
1.
a, Để \(\dfrac{x+1}{x^2-2}\) có nghĩa \(\Leftrightarrow x^2-2\ne0\Leftrightarrow x^2\ne2\Leftrightarrow\left\{{}\begin{matrix}x\ne\sqrt{2}\\x\ne-\sqrt{2}\end{matrix}\right.\)
b, Để \(\dfrac{x-1}{x^2+1}\)có nghĩa \(\Leftrightarrow x^2+1\ne0\Leftrightarrow x^2\ne-1\)
Vì \(x^2\ge0\forall x\in R\).
Vậy biểu thức trên luôn luôn có nghĩa.
c, Để \(\dfrac{ax+by+c}{xy-3y}cónghĩa\Leftrightarrow xy-3y=y\left(x-3\right)\ne0\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\y\ne3\end{matrix}\right.\).