\(\frac{1}{a}\) +...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2017

mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !

1 tháng 3 2017

bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu

bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)

những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện

31 tháng 8 2017

B2:Áp dụng cô si ta có:\(ab\le\frac{\left(a+b\right)^2}{4}=\frac{1}{4}\)

Ta có \(\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2=a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2}+4\left(1\right)\)

Từ \(\left(1\right)\)suy ra BĐT tương đương với \(a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2}\ge\frac{17}{2}\)

Ta có \(a^2+b^2+\frac{1}{a^2}+\frac{1}{b^2}=\left(a+b\right)^2-2ab+\frac{\left(a+b\right)^2-2ab}{a^2b^2}\)Mà \(ab\le\frac{1}{4}\)

Nên \(\hept{\begin{cases}\left(a+b\right)^2-2ab=1-2.\frac{1}{4}=\frac{1}{2}\left(2\right)\\\frac{\left(a+b\right)^2-2ab}{a^2b^2}\ge\frac{\frac{1}{2}}{\frac{1}{16}}=8\left(3\right)\end{cases}}\)

Cộng \(\left(2\right)vs\left(3\right)\)lại ta thu được \(đpcm\)

Dấu \(=\)xảy ra khi \(a=b=\frac{1}{2}\)

15 tháng 10 2020

3.

\(5a^2+2ab+2b^2=\left(a^2-2ab+b^2\right)+\left(4a^2+4ab+b^2\right)\)

\(=\left(a-b\right)^2+\left(2a+b\right)^2\ge\left(2a+b\right)^2\)

\(\Rightarrow\sqrt{5a^2+2ab+2b^2}\ge2a+b\)

\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\)

Tương tự \(\frac{1}{\sqrt{5b^2+2bc+2c^2}}\le\frac{1}{2b+c};\frac{1}{\sqrt{5c^2+2ca+2a^2}}\le\frac{1}{2c+a}\)

\(\Rightarrow P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\)

\(\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\)

\(=\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{1}{3}.\sqrt{3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)}=\frac{\sqrt{3}}{3}\)

\(\Rightarrow MaxP=\frac{\sqrt{3}}{3}\Leftrightarrow a=b=c=\sqrt{3}\)

25 tháng 6 2017

Đặt \(\hept{\begin{cases}a=y+z\\b=x+z\\c=x+y\end{cases}}\) suy ra x,y,z dương và cần cm

\(\left(2x+y+z\right)\left(2y+x+z\right)\left(2z+x+y\right)\)

\(\ge8Σ_{cyc}\left(y-z\right)\left(2x+y+z\right)\left(2y+x+z\right)\)

\(\LeftrightarrowΣ_{cyc}\left(2x^3+15x^2y-x^2z+\frac{16}{3}xyz\right)\ge0\)

Đúng theo BĐT Rearrangement

5 tháng 8 2017

b2 \(\sqrt{x-1}+\sqrt{y-1}+\sqrt{z-1}=\sqrt{x}.\sqrt{1-\frac{1}{x}}+\sqrt{y}.\)\(\sqrt{y}.\sqrt{1-\frac{1}{y}}+\sqrt{z}.\sqrt{1-\frac{1}{z}}\)rồi dung bunhia là xong

5 tháng 8 2017

A= \(\frac{1}{a^3}\)\(\frac{1}{b^3}\)\(\frac{1}{c^3}\)\(\frac{ab^2}{c^3}\)\(\frac{bc^2}{a^3}\)\(\frac{ca^2}{b^3}\)

Svacxo:
3 cái đầu >= \(\frac{9}{a^3+b^3+c^3}\)

3 cái sau >= \(\frac{\left(\sqrt{a}b+\sqrt{c}b+\sqrt{a}c\right)^2}{a^3+b^3+c^3}\)

Cô-si: cái tử bỏ bình phương >= 3\(\sqrt{abc}\)

=> cái tử >= 9abc= 9 vì abc=1 
Còn lại tự làm

29 tháng 5 2018

4. Ta có: \(a+b+c=6abc\)

\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)

Đặt \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)

\(\Rightarrow xy+yz+zx=6\)

Lại có: \(\frac{bc}{a^3\left(c+2b\right)}=\frac{1}{a^3\frac{c+2b}{bc}}=\frac{\frac{1}{a^3}}{\frac{1}{b}+\frac{2}{c}}=\frac{x^3}{y+2z}\)

Tương tự suy ra: 

\(S=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)

\(=\frac{x^4}{xy+2zx}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\frac{x^2+y^2+z^2}{3}\ge\frac{xy+yz+zx}{3}=2\)

Dấu = xảy ra khi \(x=y=z=\sqrt{2}\Rightarrow a=b=c=\frac{1}{\sqrt{2}}\)

\(1.\)\(Cho\)\(a,b\ge0.\)   \(CM: \)\(a^3b^3\left(a^2-ab+b^2\right)\le\frac{\left(a+b\right)^8}{256}.\)\(2.\)\(Cho\)\(a,b,c\ge0\) và \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2.\)   \(CM:\)\(abc\le\frac{1}{8}.\)\(3.\)\(Cho\)\(a,b,c,d\ge0\) và \(\frac{a}{1+a}+\frac{2b}{b+1}+\frac{3c}{1+c}\le1.\)   \(CM:\)\(ab^2c^3< \frac{1}{5^6}.\)\(4.\)Với ∀\(a,b,c\ge0.\)   \(CM:\)\(a^4b^2c+b^4c^2a+c^4a^2b\le...
Đọc tiếp

\(1.\)\(Cho\)\(a,b\ge0.\)

   \(CM: \)\(a^3b^3\left(a^2-ab+b^2\right)\le\frac{\left(a+b\right)^8}{256}.\)
\(2.\)\(Cho\)\(a,b,c\ge0\) và \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2.\)
   \(CM:\)\(abc\le\frac{1}{8}.\)
\(3.\)\(Cho\)\(a,b,c,d\ge0\) và \(\frac{a}{1+a}+\frac{2b}{b+1}+\frac{3c}{1+c}\le1.\)
   \(CM:\)\(ab^2c^3< \frac{1}{5^6}.\)

\(4.\)Với ∀\(a,b,c\ge0.\)
   \(CM:\)\(a^4b^2c+b^4c^2a+c^4a^2b\le a^7+b^7+c^7.\)

\(5.\)\(Cho\)\(a,b,c>0.\)
   \(CM:\)\(\frac{a^5}{b^3c}+\frac{b^5}{c^3a}+\frac{c^5}{a^3b}\ge a+b+c.\)

\(6.\)\(Cho\)\(a,b,c>0.\)
   \(CM:\)\(\frac{a^3b}{c}+\frac{b^3c}{a}+\frac{c^3a}{b}\ge ab^2+bc^2+ca^2.\)

\(7.\)\(Cho\)\(a,b,c>0\) và \(a+b+c=3.\)
   \(CM:\)\(\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1}\ge\frac{3}{2}.\)
\(8.\)\(Cho\)\(a,b,c>0.\)
   \(CM:\)\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{a+b+c}{2}.\)
\(9.\)\(Cho\)\(a,b,c>0\) và \(a+b+c=1.\)
   \(CM:\)\(\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ca}{b+1}\le\frac{1}{4}.\)

\(10.\)\(Cho\)\(a,b,c>0.\)

   \(CM:\)\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\frac{a+b+c}{2abc}.\)

2
13 tháng 8 2016

\(1.\)\(a^3b^3\left(a^2-ab+b^2\right)\le\frac{\left(a+b\right)^8}{256}\)
\(\Leftrightarrow a^3b^3\left(a^2-ab+b^2\right)\left(a+b\right)\le\frac{\left(a+b\right)^9}{256}\)

\(\Leftrightarrow a^3b^3\left(a+b\right)^3\left(a^3+b^3\right)\le\frac{\left(a+b\right)^{12}}{256}\)

\(VT=ab\left(a+b\right).ab\left(a+b\right).ab\left(a+b\right).\left(a^3+b^3\right)\)

     \(\le\left(\frac{ab\left(a+b\right)+ab\left(a+b\right)+ab\left(a+b\right)+\left(a^3+b^3\right)}{4}\right)^4\)

     \(\le\frac{\left(a^3+3a^2b+3ab^2+b^3\right)^4}{256}\)

     \(\le\frac{\left(a+b\right)^{12}}{256}\left(đpcm\right).\)

14 tháng 8 2016

\(2.\)    \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2\)
     \(\Leftrightarrow\frac{1}{1+a}\ge1-\frac{1}{1+b}+1-\frac{1}{1+c}\)

                       \(\ge\frac{b}{1+b}+\frac{c}{1+c}\) 
                       \(\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\)

   \(\Rightarrow\hept{\begin{cases}\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}\\\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\end{cases}}\)
   \(\Rightarrow\frac{1}{1+a}.\frac{1}{1+b}.\frac{1}{1+c}\ge8\sqrt{\frac{a^2b^2c^2}{\left(1+a\right)^2.\left(1+b\right)^2.\left(1+c\right)^2}}\)\(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge\frac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
\(\Leftrightarrow\)                                 \(1\ge8abc\)

\(\Leftrightarrow\)                            \(abc\ge\frac{1}{8}\left(đpcm\right).\)