Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong 4 số a,b,c,d sẽ có ít nhất 2 số có cùng số dư khi chia cho 3 nên tích đó sẽ chia hết cho 3.
Trong 4 số a,b,c,d
Nếu có 2 số có cùng số dư khi chia cho 4 thì tích đó chia hết cho 4
Nếu không có cùng số dư thì số dư của 4 số đó chia cho 4 lần lược sẽ là 0,1,2,3. Vậy trong 4 số này có 2 số chẵn, 2 số lẻ. Mà hiệu 2 số chẵn và lẻ đều là số chẵn nên tích đó phải có ít nhât 2 số chẵn hay tích đó chia hết cho 4
Vì 3 và 4 nguyên tố cùng nhau nên tích đã cho chia hết cho 12
Câu hỏi của Hiền Hòa - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo bài làm ở link này nhé! :)
vi a>c
=>a2>c2
mà a/b=c/d
=>ad=bc
do đó a2>c2
=>ad+a2>bc+c2
=>a(a+d)>c(b+c)
mà a>c(theo bài ra)
=>a+d>b+c(dpcm)
Ta có : \(b>0,d>0,\frac{a}{b}< \frac{c}{d}\)
\(\Rightarrow ad< bc\) ( 1 )
\(\Rightarrow ad+ab< bc+ab\)
\(\Rightarrow a\left(d+b\right)< b\left(a+c\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)
Vì \(b>0,d>0,\frac{a}{b}< \frac{c}{d}\)
\(\Rightarrow\frac{a}{b}< \frac{c}{d}=ad< bc\)
\(\Rightarrow ad+cd< bc+cd\) ( 2 )
\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
Xét mọi trường hợp chẵn lẽ của a,b,c,d ta thấy đều có 2 thừa số chẵn trở lên
=> Tích chia hết cho 4 (*)
Theo nguyên lí Đi-rich-lê, trong 4 số a,b,c,d luôn có 2 số có cùng số dư với 3.
=> Hiệu 2 số đó chia hết cho 3.
=> Tích chia hết cho 3 (**).
Vì (3,4) = 1 nên từ (*)và (**).
=> Tích chia hết cho 12.