K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2018

1,Ta có: \(A=a^3+b^3+ab\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+ab\)

\(=a^2-ab+b^2+ab\)

\(=a^2+b^2\)

\(=\left(a+b\right)^2-2ab\)

\(=1-2ab\)

\(a+b=1\Rightarrow a=1-b\)

Khi đó \(A=1-2\left(1-b\right)b\)

\(=1-2b-2b^2\)

\(=2\left(b^2-b+\dfrac{1}{4}\right)+\dfrac{1}{2}\)

\(=2\left(b-\dfrac{1}{2}\right)^2+\dfrac{1}{2}\)

\(2\left(b-\dfrac{1}{2}\right)^2\ge0\Rightarrow A=2\left(b-\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\)

Dấu "=" xảy ra khi \(\left(b-\dfrac{1}{2}\right)^2=0\Leftrightarrow b=\dfrac{1}{2}\Leftrightarrow a=\dfrac{1}{2}\)

Vậy \(MinA=\dfrac{1}{2}\Leftrightarrow a=b=\dfrac{1}{2}\)

2, \(B=\dfrac{2}{6x-5-9x^2}=\dfrac{-2}{9x^2-6x+5}=\dfrac{-2}{\left(3x-1\right)^2+4}\)

\(\left(3x-1\right)^2\ge0\Rightarrow\left(3x-1\right)^2+4\ge4\)

\(\Rightarrow\dfrac{1}{\left(3x-1\right)^2+4}\le\dfrac{1}{4}\)

\(\Rightarrow B=\dfrac{-2}{\left(3x-1\right)^2+4}\ge\dfrac{-2}{4}=\dfrac{-1}{2}\)

Dấu "=" xảy ra khi \(3x-1=0\Leftrightarrow x=\dfrac{1}{3}\)

Vậy \(MinB=\dfrac{-1}{2}\Leftrightarrow x=\dfrac{1}{3}\)

15 tháng 6 2018

Cách khác :

Bài 1. Ta có : \(a^3+b^3+ab=\left(a+b\right)\left(a^2-ab+b^2\right)+ab=a^2+b^2\)

Áp dụng BĐT Bunhiacopxki , ta có :

\(\left(a^2+b^2\right)\left(1^2+1^2\right)\)\(\left(a+b\right)^2\)

\(a^2+b^2\)\(\dfrac{\left(a+b\right)^2}{2}=\dfrac{1}{2}\)

⇔ GTNN của \(a^2+b^2\)\(\dfrac{1}{2}\) . Đẳng thức xảy ra khi : \(x=y=\dfrac{1}{2}\)

Bài 2. \(B=\dfrac{2}{6x-5-9x^2}=\dfrac{-2}{9x^2-6x+5}\)

\(B=\dfrac{-4}{2\left(9x^2-6x+5\right)}=\dfrac{-9x^2+6x-5+9x^2-6x+1}{2\left(9x^2-6x+5\right)}\)

\(B=\dfrac{-1}{2}+\dfrac{\left(3x-1\right)^2}{2\left(3x-1\right)^2+8}\)

Do : \(\dfrac{\left(3x-1\right)^2}{2\left(3x-1\right)^2+8}\) ≥ 0 ∀x

\(\dfrac{-1}{2}+\dfrac{\left(3x-1\right)^2}{2\left(3x-1\right)^2+8}\)\(\dfrac{-1}{2}\)

\(B_{Min}=\dfrac{-1}{2}\)\(x=\dfrac{1}{3}\)

11 tháng 1 2019

\(A=\frac{6}{x^2-2x+3}=\frac{6}{x^2-2x+1+2}=\frac{6}{\left(x-1\right)^2+2}\le3\)

Dấu = xảy ra khi x-1=0

=> x=1

B tương tự

bài 2:

\(A=\frac{5}{-x^2+2x}=\frac{5}{-\left(x^2-2x+1\right)+1}=\frac{5}{-\left(x-1\right)^2+1}\le5\)(x khác 2)

dấu = xảy ra khi x-1=0

=> x=1

tìm GTLN chứ????? 

9 tháng 9 2016

Bài 1:

a) \(25x^2+3-10x=\left(25x^2-10x+1\right)+2=\left(5x-1\right)^2+2>0\)

=>đpcm

b) \(-9x^2-2+6x=-\left(9x^2-6x+1\right)-1=-\left(3x-1\right)^2-1< 0\)

=>đpcm

Bài 2:

\(A=4x^2+3-4x=\left(4x^2-4x+1\right)+2=\left(2x-1\right)^2+2\ge2\)

Vậy \(x=\frac{1}{2}\) thì A đạt GTNN là 2

\(B=-x^2+10x-28=-\left(x^2-10x+25\right)-3=-\left(x-5\right)^2-3\le-3\)

Vậy x=5 thì B đạt GTLN là -3

9 tháng 9 2016

A = 25x2 + 3 - 10x

= (5x)2 - 2 . 5x . 1 + 1 + 2

= (5x - 1)2 + 2

(5x - 1)2 lớn hơn hoặc bằng 0

(5x - 1)2 + 2 lớn hơn hoặc bằng 2 > 0 

Vậy A > 0 vs mọi x (đpcm)

B = - 9x2 - 2 + 6x 

= - [(3x)2 - 2 . 3x . 1 + 1 + 1]

= - [(3x - 1)2 + 1]

(3x - 1)2 lớn hơn hoặc bằng 0

(3x - 1)2 + 1 lớn hơn hoặc bằng 1 

- [(3x - 1)2 + 1] nhỏ hơn hoặc bằng  - 1 < 0

Vậy B < 0 với mọi x (đpcm)

***

A = 4x2 - 4x + 3

= (2x)2 - 2 . 2x . 1 + 1 + 2

= (2x - 1)2 + 2

(2x - 1)2 lớn hơn hoặc bằng 0

(2x - 1)2 + 2 lớn hơn hoặc bằng 2

Min A = 2 khi x = 1/2

B = -x2 + 10x - 28

= - [x2 - 2 . x . 5 + 25 + 3]

= - [(x - 5)2 + 3]

(x - 5)2 lớn hơn hoặc bằng 0

(x - 5)2 + 3 lớn hơn hoặc bằng 3

- [(x - 5)2 + 3] nhỏ hơn hoặc bằng 3

Vậy Max B = 3 khi x = 5

21 tháng 7 2017

1+2+3+4+5+6+7+8+9+10+...+999999999999999999999999999999999999999999999999999999999 x 0 = 0

8 tháng 8 2019

B1: 

a, \(4x^2+y\left(y-4x\right)-9\)

\(=4x^2+y^2-4xy-9\)

\(=\left(x-y\right)^2-3^2\)

\(=\left(x-y+3\right)\left(x-y-3\right)\)

8 tháng 8 2019

1.

b) \(a^2-b^2+a-b\)

\(=\left(a^2-b^2\right)+\left(a-b\right)\)

\(=\left(a-b\right)\left(a+b+1\right)\)

25 tháng 12 2017

Ta có : P = x4 + x2 - 6x + 9 = x4 + (x2 - 6x + 9) = x4 + (x - 3)2

Mà : x4 \(\ge0\forall x\in R\) 

       (x - 3)\(\ge0\forall x\in R\)

Nên : P = x4 + (x - 3)2 \(\le x-x-3=-3\) 

Vậy GTNN của P = 3 khi x = 0