Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1a, Ta có : 2S=2+2^2+2^3+...+2^51
=>2S- S=(2+2^2+2^3+...+2^51)-(1+2+2^2+...+2^50)
=> S = 2^51-1
Vậy S < 2^51
1,b 24^54.54^24.2^10 chia hết 72^63
24^54.54^24.2^10=(2^3.3)^54.(3^3.2)^24...
=(2^3)^54.3^54.(3^3)^24.2^24.2^10
= 2^162.2^24.2^10.3^54.3^72
=2^196.3^126
72^63=(2^3.3^2)^63
=(2^3)^63(.3^2)^63=2^189.3^126
vì 2^196.3^126 chia hết 2^189.3^126
=>24^54.54^24.2^10 chia hết 72^63
Đăt S = 3^(n+2)-2^(n+2)+3^n-2^n
= 3^(n+2) + 3^n - [2^(n+2) + 2^n]
Ta có 3^(n+2) + 3^n = 9.3^n + 3^n = 10.3^n (chia hết cho 10)
Và 2^(n+2) + 2^n = 4.2^n + 2^n = 5.2^n (chia hết cho 10, vì chia hết cho 2 và 5)
Suy ra S chia hết cho 10.
2 Ta có M =|x-2002|+|x-2001| => M ≥ | x-2002+x-2001|
=> M ≥ | 2x-4003 | va | 2x-4003 | ≥ 0
Có 2 truong hop 2x ≤ 4003 va 2x ≥ 4003
Th1 : 2x ≤ 4003
=> M ≥ 4003-2x ≥ 0
Để m nho nhat thi 2x phai lon nhat
=> 2x=4003=>x=\(\frac{4003}{2}\)
M ≥ 4003-4003=0
Th2 2x ≥ 4003
M ≥ 2x-4003 ≥0
Để M nho nhat thi 2x phai nho nhat
=> 2x=4003=>x=4003/2
M ≥ 4003 -4003=0
Tu 2 truong hop tren ta co GTNN cua M la 0
Xay ra khi x=4003/2
Để M đạt GTNN thì:
|x-2002|+|x-2001|> hoặc = 0
Vì |x-2002|> hoặc = 0
|x-2001|> hoặc = 0
Nếu |x-2002|=0
=>x-2002=0
x=2002+0
x=2002
Thay x=2002 ta có:
|2002-2002|+|2002-2001|
=|0|+|1|
=0+1
=1
=> GTNN của M=1
Tham khảo nha Câu hỏi của Đỗ Thị Thu Trang - Toán lớp 6 - Học toán với OnlineMath
a/ \(2^{n+3}-32=2^3.2^n-32=8\left(2^4-4\right)⋮8\)
b/ \(\left(3^8+3^7\right)-\left(2^8+2^7\right)=3^7\left(3+1\right)-2^7\left(2+1\right)=\)
\(=2^2.3^7-2^7.3=2^2.3\left(3^6-2^5\right)=12\left(3^6-2^5\right)⋮12\)
a)\(8^7-2^{18}=\left(2^3\right)^7-2^{18}=2^{21}-2^{18}=2^{17}\left(2^4-2\right)=2^{17}.14\)
suy ra 8^7-2^18 chia hết cho 14
a) 8^7 = (2^3)^7 = 2^21
Vậy 8^7-2^18 = 2^21 - 2^18 = 2^18(2^3-1)= 2^18 x 7 chia hết cho 7 (ĐPM)
b) 5^5 - 5^4 + 5^3 = 5^3(5^2-5+1) = 5^3 x 21 = 5^3 x 3 x 7 chia hết cho 7 (ĐPCM)
c) 7^6 + 7^5 - 7^4 = 7^4 x ( 7^2+7-1) = 7^4 x 55 = 7^4 x 5 x 11 chia hết cho 11 (ĐPCM)
d) Ta có: 24^54 = 8^54 x 3^54 = (2^3)^54 x 3^54 = 2^162 x 3^54
72^63 = 8^63 x 9^63 = (2^3)^63 x (3^2)^63 = 2^189 x 3^126
Vậy 24^54 x 5^24 x 2^10 = 5^24 x 2^10 x 2^162 x 3^54 = 2^172 x 3^54 x 5^24
Rõ ràng 2^172 x 3^54 x 5^24 không chia hết cho 2^189 x 3^126 nên 24^54 x 5^24 x 2^10 không chia hết cho 72^63 (bài này mình thấy lạ, nếu sai ở đâu các bạn chỉ ra nha)
e) \(3^{n+2}-2^{n+2}+3^n+2^n=3^n.9-2^n.4+3^n+2^n=3^n\left(9+1\right)-2^n\left(4-1\right)=10.3^n-2^n.3\)
Rõ ràng 10.3^n - 2^n.3 không chia hết cho 10 (bạn ấn máy tính thử, mình gặp bài này rồi, chắc đề sai)
Các bạn ơi, đính chính lại nhé! Chỉ cần giải bài 1, 2a,2d và bài 3 là được rồi nhé, mình cảm ơn
1. Xét 32^9 và 18^13
ta có 32^9=(2^5)^9=2^45
18^13>16^13=(2^4)^13=2^52
vì 18^13>2^52>2^45 nên 18^13>32^9
2.
a, ta có A=10\(^{2008}\)+125=100...0+125(CÓ 2008 SỐ 0)=100..0125(CÓ 2005 CSO 0)
Vì 45=5.9 nên cần chứng minh A \(⋮5,⋮9\)
mà A có tcung là 5 nên A \(⋮\)5
A có tổng các cso là 9 nên A\(⋮\)9
vậy A \(⋮\)45
d, bn xem có sai đề ko nhé
3, A=(y+x+1)/x=(x+z+2)/y=(x+y-3)/z=1/(x+y+z)=(y+x+1+x+z+2+x+y-3)/(x+y+z)=2(x+y+z)/(x+y+z)=1/(x+y+z)( AD tchat của dãy tỉ số = nhau)
x+y+z=1/2 hoặc -1/2
còn lai bn tự tính nhé
a)\(10^{19}+10^{18}+10^{17}=10^{17}\left(10^2+10+1\right)\)=1017.111=1016.2.5.111=1016.2.555 chia hết cho 555
b)\(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)=328-327-326=325(33-32-3)=325.15 chia hết cho 15
c)\(5^7-5^6+5^5=5^5\left(5^2-5+1\right)=5^5.21\) chia hết cho 21
d)\(7^6+7^5-7^4=7^3\left(7^3+7^2-7\right)=7^3.385=7^3.5.77\) chia hết cho 77
a/ \(10^k-1⋮19\)
\(\Leftrightarrow10^k-1=19a\left(a\in N\right)\)
\(\Leftrightarrow10^k=19a+1\)
\(\Leftrightarrow10^k.10^k=\left(19a+1\right)\left(19a+1\right)\)
\(\Leftrightarrow10^{2k}=19^2n^2+2.19n⋮19\)
\(\Leftrightarrowđpcm\)