K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2020

AH
Akai Haruma
Giáo viên
16 tháng 9 2020

Bài 2: Biểu thức không có GTLN mà chỉ có GTNN. Bạn có muốn tìm GTNN không?

Bài 4: Tam giác ABC vuông tại A, đường cao AH. I, K lần lượt là hình chiếu của H trên AB, AC. M là trung điểm của BC. Chứng minh rằng: AM vuông góc với IKBài 5: Hình thang vuông ABCD, góc A= góc B= 90 độ, AB= AD= CD/2. E thuộc AB; EF vuông góc với DE ( F thuộc DC ). Chứng minh rằng: ED= EFBài 1:1) Tính nhanh:d) D= 100^2+ 103^2+ 105^2+ 94^2- ( 101^2+ 98^2+ 96^2+ 107^2 )2)Rút gọn và tính giá trị của biểu thức:b)...
Đọc tiếp

Bài 4: Tam giác ABC vuông tại A, đường cao AH. I, K lần lượt là hình chiếu của H trên AB, AC. M là trung điểm của BC. Chứng minh rằng: AM vuông góc với IK
Bài 5: Hình thang vuông ABCD, góc A= góc B= 90 độ, AB= AD= CD/2. E thuộc AB; EF vuông góc với DE ( F thuộc DC ). Chứng minh rằng: ED= EF

Bài 1:
1) Tính nhanh:
d) D= 100^2+ 103^2+ 105^2+ 94^2- ( 101^2+ 98^2+ 96^2+ 107^2 )
2)Rút gọn và tính giá trị của biểu thức:
b) (x-2)^3-(x-2)(x^2+2x+4)+6(x-2)(x+2)-x(x-1) tại x= 101
c) (x+1)^3-(x+3)(x^2-3x+9)+3(2x-1)^2 tại x= -2
Bài 11: Xác định đa thức f(x) biết f(x) chia hết cho (x-2) dư 5, f(x) chia cho (x-3) dư 7, f(x) chia cho (x-3)(x-2) được thương x^2-1 và có dư
Bài 12: Tìm x tự nhiên sao cho:
a) Giá trị biểu thức x^3+2x-x^2+7 chia hết cho giá trị biểu thức (x^2+1)
b) Giá trị đa thức ( 2x^4-3x^3-x^2+5x-4) chia hết cho giá trị đa thức (x-3)
Bài 13: Tìm x thuộc Z để giá trị biểu thức 8x^2-4x+1 chia hết cho giá trị biểu thức 2x+1
Bài 14: Chứng minh rằng:
a) a^3-a chia hết cho 24a với a là số nguyên tố lớn hơn 3
b) n(2n+1)(7n+1) chia hết cho 6 với mọi n thuộc Z
c) n^3-13n chia hết cho 6 với mọi n thuộc Z
d) a^5-a chia hết cho 30 với mọi a thuộc Z

0
5 tháng 9 2017

1.(x-y+z)2+(z-y)2+2(x-y+z)(y-z)= (x-y+z)+2(x-y+z)(y-z)+(y-z)2=(x-y+z+y-z)2=x2

CT : (A+B)2=A2+2AB+B2

5 tháng 9 2017

Ta có : A = 4x - x2 + 3

=> A = -(x2 - 4x - 3)

=> A = -(x2 - 4x + 4 - 7) 

=> A = -(x2 - 4x + 4) + 7

=> A = -(x - 2)2 + 7

Vì : \(-\left(x-2\right)^2\le0\forall x\) 

=>  A = -(x - 2)2 + 7 \(\le7\forall x\)

Vậy Amax = 7 khi x = 2

6 tháng 6 2017

a chia 5 dư 4=>a=5k+4

=>a2=(5k+4)(5k+4)

=(5k+4)5k+4(5k+4)

=(5k+4)5k+5.4k+3.5+1 chia 5 dư 1

=>đpcm


31 tháng 7 2017

Vì a chia cho 5 dư 4 nên có thể biểu diễn a = 5b + 4.
=> a^2 = 25b^2 + 40b +16.
mà 25b^2 luôn chia hết cho 5, 40b cũng luôn chia hết cho 5. nên số dư của biểu thức 25b^2 + 40b +16 khi chia cho 5 bằng số dư của 16 chia cho 5.
=> 16:5 dư 1
=> dpcm.

21 tháng 7 2016

Gọi số cần tìm là a ta có :

a : 5 dư 4 => a = 5k + 4 (với k \(\in N\))

=> a= (5k + 4) (5k + 4) (với k \(\in N\))

=> a2 = 5k (5k + 4) + 4(5k +4)

=> a2 = (5k + 4) . 5k + 5.4k + 3.5 + 1 chia 5 dư 1

=> ĐPCM

31 tháng 7 2017

\(a:5\) dư 4 \(\Rightarrow a=5k+4\)

\(\Rightarrow a^2=\left(5k+4\right)\left(5k+4\right)\)

\(\Rightarrow\) \(a^2=(5k+4)5k+4(5k+4)\)

\(\Rightarrow\) \(a^2 =(5k+4)5k+5.4k+3.5+1 : 5\) dư 1

\(\RightarrowĐPCM\)

1. Chứng minh rằng \(5^{8^{2006}}\) \(+\)\(5\) chia hết cho 62. Tìm nghiệm nguyên dương của phương trình \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)3.Cho biểu thức:P= \(\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}+\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab-1}}-1\right):\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}-\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}+1\right)\)a) Rút gọn Pb) Cho a+b =1. Tìm giá trị nhỏ nhất của P4. Cho a,b,c là các số thực dương thỏa mãn điều kiện...
Đọc tiếp

1. Chứng minh rằng \(5^{8^{2006}}\) \(+\)\(5\) chia hết cho 6

2. Tìm nghiệm nguyên dương của phương trình \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

3.Cho biểu thức:

P= \(\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}+\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab-1}}-1\right):\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}-\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}+1\right)\)

a) Rút gọn P

b) Cho a+b =1. Tìm giá trị nhỏ nhất của P

4. Cho a,b,c là các số thực dương thỏa mãn điều kiện abc = 1.Tìm giá trị nhỏ nhất của biểu thức

P= \(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\)

5. Tìm các số nguyên x,y thỏa mãn hằng đẳng thức:

\(2xy^2+x+y+1=x^2+2y^2+xy\)

6. Đa thức \(F\left(x\right)\)chia cho \(x+1\)dư 4, chia cho \(x^2+1\)dư \(2x+3\). Tìm đa thức dư khi \(F\left(x\right)\) chia cho \(\left(x+1\right)\left(x^2+1\right)\)

Giúp em ạ. Giải từng câu cũng được ạ. Mai em nộp bài rồi. 

1
9 tháng 2 2017

\(P=\frac{\frac{1}{a^2}}{\frac{1}{b}+\frac{1}{c}}+\frac{\frac{1}{b^2}}{\frac{1}{a}+\frac{1}{c}}+\frac{\frac{1}{c^2}}{\frac{1}{a}+\frac{1}{b}}\)

Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\Rightarrow xyz=1\Rightarrow P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có: 

\(P\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\frac{x+y+z}{2}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(x=y=z\Leftrightarrow a=b=c=1\)

Cần cách khác thì nhắn cái

17 tháng 7 2019

Bài 1:

a chia 5 dư 2

=> a = 5k + 2(k thuộc N)

\(\Leftrightarrow a^2=\left(5k+2\right)^2=25k^2+20k+4\)

Mà \(25k^2;20k⋮5\)

=>\(a^2=25k^2+20k+4\)chia 5 dư 4

Bài 2:

P = x^2 + 4x - 1 với x bằng mấy vậy bạn ơi