Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng quy tắc khai phương một thương, hãy tính :
a) 9169−−−−√ = \(\sqrt{\dfrac{3^2}{13^2}}\) = \(\left|\dfrac{3}{13}\right|\) = \(\dfrac{3}{13}\)
b) 25144−−−−√ = \(\sqrt{\dfrac{5^2}{12^2}}\) = \(\left|\dfrac{5}{12}\right|\) = \(\dfrac{5}{12}\)
c) 1916−−−−√ = \(\sqrt{\dfrac{25}{16}}\) = \(\sqrt{\dfrac{5^2}{4^2}}\) = \(\left|\dfrac{5}{4}\right|\) = \(\dfrac{5}{4}\)
d) 2781−−−−√ = \(\sqrt{\dfrac{169}{81}}\) = \(\sqrt{\dfrac{13^2}{9^2}}\) = \(\left|\dfrac{13}{9}\right|\) = \(\dfrac{13}{9}\)
1
a,\(\sqrt{\dfrac{36}{121}}=\sqrt{\dfrac{6^2}{11^2}}=\dfrac{6}{11}\)
\(\sqrt{\dfrac{9}{16}:\dfrac{25}{36}}=\sqrt{\dfrac{81}{100}}=\sqrt{\dfrac{9^2}{10^2}}=\dfrac{9}{10}\)
Áp dụng quy tắc chia hai căn bậc hai, hãy tính :
a) 2300−−−−√23−−√ = \(\sqrt{\dfrac{2300}{23}}\) = \(\sqrt{100}\) = 10
b) 12,5−−−−√0,5−−−√ = \(\sqrt{\dfrac{12,5}{0,5}}\) = \(\sqrt{25}\) = 5
c) 192−−−√12−−√ = \(\sqrt{\dfrac{192}{12}}\) = \(\sqrt{16}\) = 4
d) 6–√150−−−√ = \(\sqrt{\dfrac{6}{150}}\) = \(\sqrt{\dfrac{1}{25}}\) = \(\dfrac{1}{5}\)
Bài 1 :
Câu a : \(\sqrt{\dfrac{1,44}{3,61}}=\sqrt{\dfrac{144}{361}}=\dfrac{\sqrt{144}}{\sqrt{361}}=\dfrac{12}{19}\)
Câu b : \(\sqrt{\dfrac{0,25}{9}}=\sqrt{\dfrac{25}{900}}=\dfrac{\sqrt{25}}{\sqrt{900}}=\dfrac{5}{30}=\dfrac{1}{6}\)
Câu c : \(\sqrt{1\dfrac{13}{36}}.\sqrt{3\dfrac{13}{36}}=\sqrt{\dfrac{49}{36}}.\sqrt{\dfrac{121}{46}}=\dfrac{\sqrt{49}}{\sqrt{36}}.\dfrac{\sqrt{121}}{36}=\dfrac{7}{6}.\dfrac{11}{6}=\dfrac{77}{36}\)
Câu d : \(\sqrt{\dfrac{1}{121}.3\dfrac{6}{25}}=\sqrt{\dfrac{1}{121}.\dfrac{81}{25}}=\dfrac{1}{\sqrt{121}}.\dfrac{\sqrt{81}}{\sqrt{25}}=\dfrac{1}{11}.\dfrac{9}{5}=\dfrac{9}{55}\)
Câu e : \(\sqrt{1\dfrac{13}{36}.2\dfrac{2}{49}.2\dfrac{7}{9}}=\sqrt{\dfrac{49}{36}.\dfrac{100}{49}.\dfrac{25}{9}}=\dfrac{\sqrt{49}}{\sqrt{36}}.\dfrac{\sqrt{100}}{\sqrt{49}}.\dfrac{\sqrt{25}}{\sqrt{9}}=\dfrac{7}{6}.\dfrac{10}{7}.\dfrac{5}{3}=\dfrac{25}{9}\)
Bài 2 :
Câu a : \(\dfrac{\sqrt{245}}{\sqrt{5}}=\sqrt{\dfrac{245}{5}}=\sqrt{49}=7\)
Câu b : \(\dfrac{\sqrt{3}}{\sqrt{75}}=\sqrt{\dfrac{3}{75}}=\sqrt{\dfrac{1}{25}}=\dfrac{1}{5}\)
Câu c : \(\dfrac{\sqrt{10,8}}{\sqrt{0,3}}=\sqrt{\dfrac{10,8}{0,3}}=\sqrt{\dfrac{108}{3}}=\sqrt{36}=6\)
Câu d : \(\dfrac{\sqrt{6,5}}{\sqrt{58,5}}=\sqrt{\dfrac{6,5}{58,5}}=\sqrt{\dfrac{65}{585}}=\sqrt{\dfrac{1}{9}}=\dfrac{1}{3}\)
a) \(\sqrt{\dfrac{1}{9}.0,4.64}=\sqrt{\dfrac{1}{9}}.\sqrt{0,4}.\sqrt{64}=\dfrac{1}{3}.\dfrac{\sqrt{10}}{5}.8=\dfrac{8\sqrt{10}}{15}\)
b) \(\sqrt{11\dfrac{1}{9}}=\sqrt{\dfrac{100}{9}}=\dfrac{\sqrt{100}}{\sqrt{9}}=\dfrac{10}{3}\)
c) \(\sqrt{\dfrac{1}{44}.2\dfrac{2}{49}}=\sqrt{\dfrac{1}{44}}.\sqrt{\dfrac{100}{49}}=\dfrac{\sqrt{11}}{22}.\dfrac{10}{7}=\dfrac{5\sqrt{11}}{77}\)
d) \(\sqrt{1\dfrac{9}{16}.2\dfrac{1}{4}.2\dfrac{7}{9}}\sqrt{\dfrac{25}{16}.\dfrac{9}{4}.\dfrac{25}{9}}=\sqrt{\dfrac{25}{16}}.\sqrt{\dfrac{9}{4}}.\sqrt{\dfrac{25}{9}}=\dfrac{5}{4}.\dfrac{3}{2}.\dfrac{5}{3}=\dfrac{25}{8}\)
1. với a=2,5 thì \(\sqrt{a^2}\) =\(\left|a\right|=\)\(\left|2.5\right|=2.5\)
với a=0,3 thì \(\sqrt{a^2}\) =\(\left|a\right|=\)\(\left|0,3\right|=0,3\)
với a=-0,1 thì \(\sqrt{a^2}\) =\(\left|a\right|=\)\(\left|-0,1\right|=0,1\)
Bài 4:
a: \(=\sqrt{\dfrac{10.8}{0.3}}=\sqrt{36}=6\)
b: \(=\sqrt{\dfrac{7}{175}}=\sqrt{\dfrac{1}{25}}=\dfrac{1}{5}\)
c: \(=\sqrt{\dfrac{2.84}{0.71}}=2\)
d: \(=\sqrt{\dfrac{625}{144}}=\dfrac{25}{12}\)
\(a,2\sqrt{\dfrac{27}{4}}-\sqrt{\dfrac{48}{9}}-\dfrac{2}{5}.\sqrt{\dfrac{75}{16}}\)
\(\Leftrightarrow2.\dfrac{\sqrt{27}}{2}-\sqrt{\dfrac{48}{3}}-\dfrac{2}{5}.\dfrac{\sqrt{75}}{4}\)
\(\Leftrightarrow\sqrt{27}-\dfrac{4\sqrt{3}}{3}-\dfrac{1}{5}.\dfrac{5\sqrt{3}}{2}\)
\(\Leftrightarrow3\sqrt{3}-\dfrac{4\sqrt{3}}{3}-\dfrac{\sqrt{3}}{2}\)
\(\Leftrightarrow\dfrac{7\sqrt{3}}{6}\)
\(b,\left(1+\dfrac{5-\sqrt{5}}{1-\sqrt{5}}\right).\left(\dfrac{5+\sqrt{5}}{1+\sqrt{5}}+1\right)\)
\(\Leftrightarrow\)\(\left[1+\dfrac{\left(5-\sqrt{5}\right)\left(1+\sqrt{5}\right)}{-4}\right].\left[\dfrac{\left(5+\sqrt{5}\right).\left(1-\sqrt{5}\right)}{-4}+1\right]\)
\(\Leftrightarrow\)\(\left(1+\dfrac{5+5\sqrt{5}-\sqrt{5}-5}{-4}\right).\left(\dfrac{5-5\sqrt{5}+\sqrt{5}-5}{-4}+1\right)\)
\(\Leftrightarrow\)\(\left(1+\dfrac{4\sqrt{5}}{-4}\right)\left(\dfrac{-4\sqrt{5}}{-4}+1\right)\)
\(\Leftrightarrow\left(1-\sqrt{5}\right)\left(\sqrt{5}+1\right)\)
\(\Leftrightarrow\left(1-\sqrt{5}\right).\left(1+\sqrt{5}\right)\)
<=> 1-5
=-4
Bài 1:
a: \(=\sqrt{225}=15\)
b: \(=\sqrt{\dfrac{2}{5}\cdot\dfrac{32}{5}}=\sqrt{\dfrac{64}{25}}=\dfrac{8}{5}\)
c: \(=\sqrt{121\cdot36}=11\cdot6=66\)
d: \(=7\cdot1.2\cdot5=35\cdot1.2=42\)
g: \(=\sqrt{\dfrac{27}{10}\cdot\dfrac{3}{2}\cdot5}=\sqrt{\dfrac{81}{20}\cdot5}=\sqrt{\dfrac{81}{4}}=\dfrac{9}{2}\)
Bài 2:
a: \(=\dfrac{1}{3}\cdot0.8\cdot8=\dfrac{8}{3}\cdot\dfrac{4}{5}=\dfrac{32}{15}\)
b: \(=\sqrt{\dfrac{100}{9}}=\dfrac{10}{3}\)
c: \(=\sqrt{\dfrac{1}{144}\cdot\dfrac{100}{49}}=\dfrac{1}{12}\cdot\dfrac{10}{7}=\dfrac{5}{6\cdot7}=\dfrac{5}{42}\)