K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

a: \(A=\left(x+1\right)^3+5=20^3+5=8005\)

b: \(B=\left(x-1\right)^3+1=10^3+1=1001\)

5 tháng 7 2021

a) (x + 3)2 - 2(x + 3)(x - 2) + (x - 2)2 

= (x + 3 - x + 2)2 = 52 = 25

b) (2x + 5)2 + 2(2x + 5)(3x - 1) + (3x - 1)2 

= (2x  + 5 + 3x - 1)2 = (5x  + 4)2

5 tháng 7 2021

Trả lời:

a/ ( x + 3 )2 - 2 ( x + 3 ) ( x - 2 ) + ( x - 2 )2

=  [ ( x + 3 ) - ( x - 2 ) ]2 

= ( x + 3 - x + 2 )2

= 52

= 25

b/ ( 2x + 5 )2 + 2 ( 2x + 5 ) ( 3x - 1 ) + ( 3x - 1 )2

= ( 2x + 5 + 3x - 1 )2

= ( 5x + 4 )2

5 tháng 8 2020

a, (y-x^2)^2:(y-x^2) =y-x^2

b, (x-y^2)^2:(y-x^2)=x-y^2

học tốt

5 tháng 8 2020

Bài làm:

a) \(\left(x^4-2x^2y+y^2\right)\div\left(y-x^2\right)\)

\(=\left(x^2-y\right)^2\div\left(y-x^2\right)\)

\(=\left(y-x^2\right)^2\div\left(y-x^2\right)\)

\(=y-x^2\)

b) \(\left(x^2-2xy^2+y^4\right)\div\left(x-y^2\right)\)

\(=\left(x-y^2\right)^2\div\left(x-y^2\right)\)

\(=x-y^2\)

30 tháng 8 2016

Bài 1:

a) \(\left(2x-1\right)\left(2x+1\right)=\left(2x\right)^2-1^2=4x^2-1\)

b) \(-\left(5+4y\right)\left(5-4y\right)=-\left[\left(5+4y\right)\left(5-4y\right)\right]=-\left[5^2-\left(4y\right)^2\right]=-\left(25-16y^2\right)=-25+16y^2\)

6 tháng 8 2021

\(\left(x-3\right)^2=x^2-6x+9\\ \left(3x-1\right)^2=9x^2-6x+1\\ \left(1-2x\right)^2=1-4x+4x^2\\ \left(x-\dfrac{1}{2}\right)^2=x^2-x+\dfrac{1}{4}\)

\(A=x^3+3x^2+3x+6\)

\(=x^3+3x^2+3x+1+5\)

\(=\left(x+1\right)^3+5\)

Thay x = 19 vào biểu thức \(A=\left(x+1\right)^3+5\)ta được:

\(A=\left(19+1\right)^3+5=20^3+5=8000+5=8005\)

Vậy giá trị của biểu thức A tại x = 19 là 8005.

\(B=x^3-3x^2+3x\)

\(=x^3-3x^2+3x-1+1\)

\(=\left(x-1\right)^3+1\)

Thay x = 11 vào biểu thức \(B=\left(x-1\right)^3+1\)ta được:

\(B=\left(11-1\right)^3+1=10^3+1=1000+1=1001\)

Vậy giá trị của biểu thức B tại x = 11 là 1001.

31 tháng 7 2018

A=(a+1)(a+2)(a^2+4)(a-1)(a^2+1)(a-2)

A =(a+1)(a-1)(a+2)(a-2)(a^2+4)(a^2+1)

A =(a^2-1)(a^2+1)(a^2-4)(a^2+4)

A =(a^4-1)(a^4-16)

A =\(a^{16}-16\cdot a^4-a^4+16\)

A =\(a^{16}-17\cdot a^4+16\)

B=(a+2b-3c-d)(a+2b+3c+d)

B=[(a+2b)^2 - (3c +d)^2]

B=[a^2+4ab+4b^2-(9c^2+6cd+d^2)]

B=a^3+4ab+4b^2 - 9c^2 - 6cd - d^2

C=(1-x-2x^3+3x^2)(1-x+2x^3-3x^2)

C=[(1-x)^2-(2x^3-3x^2)^2]

C=[(1-2x+x^2) - (4x^6-12x^5+9x^4)]

C=[1-2x-x^2-4x^6+12x^5-9x^4]

C=-4x^6+12x^5-9x^4-x^2-2x+1

D=(a^6-3a^3+9)(a^3+3)

D=a^9+27