Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. để Bmax thì x+2/3 đạt GTNN=> x+2/3=0=>x=-2/3
3. 4x=21
4x=-21 tự tính
x-1.5=2
x-1.5=-2
x+3/4=1/2
x+3/4=-1/2
a, \(A=\left|x-1\right|+\left|x+1\right|+\left|x-2\right|+\left|x-3\right|\ge\left|1-x+x+1\right|+\left|2-x+x-3\right|=3\)
Dấu ''='' xảy ra khi \(\left(1-x\right)\left(x+1\right)\ge0;\left(2-x\right)\left(x-3\right)\ge0\Leftrightarrow-1\le x\le1;2\le x\le3\Leftrightarrow-1\le x\le3\)
Vậy GTNN của A bằng 3 tại -1 =< x =< 3
b, \(B=\left|x+1\right|+\left|x-1\right|+\left|2x-5\right|\ge\left|x+1+x-1\right|+\left|2x-5\right|\)
\(=\left|2x\right|+\left|2x-5\right|=\left|2x\right|+\left|5-2x\right|\ge\left|2x+5-2x\right|=5\)
Dấu ''='' xảy ra khi \(\left(x+1\right)\left(x-1\right)\ge0;2x\left(5-2x\right)\ge0\Leftrightarrow;0\le x\le\frac{5}{2}\)
Vậy GTNN của B bằng 5 tại 0 =< x =< 5/2
Bài 1:
\(a)\left(\dfrac{-28}{29}\right).\left(\dfrac{-38}{16}\right)=\dfrac{\left(-28\right).\left(-38\right)}{29.16}=\dfrac{1064}{464}=\dfrac{133}{58}\)
\(b)\left(\dfrac{-21}{16}\right).\left(\dfrac{-24}{7}\right)=\dfrac{\left(-21\right).\left(-24\right)}{16.7}=\dfrac{504}{112}=\dfrac{9}{2}\)
\(c)\left|\dfrac{-12}{17}\right|.\left(\dfrac{-34}{9}\right)=\dfrac{12}{17}.\left(\dfrac{-34}{9}\right)=\dfrac{12.\left(-34\right)}{17.9}=\dfrac{-408}{153}=\dfrac{-8}{3}\)
Bài 3:
\(a)\left|x\right|=21\)
\(\Rightarrow\left[{}\begin{matrix}x=-21\\x=21\end{matrix}\right.\)
\(b)\left|x\right|=\dfrac{17}{9};x< 0\)
\(\Rightarrow x=\dfrac{-17}{9}\)
\(c)\left|x\right|=1\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
\(\left|x\right|=\dfrac{2}{5}\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{5}\\x=\dfrac{-2}{5}\end{matrix}\right.\)
\(d)\left|x\right|=0,35;x>0\)
\(\Rightarrow x=0,35\)
Bài 4:
\(a)\left|x\right|-1,7=2,3\)
\(\Rightarrow\left[{}\begin{matrix}x-1,7=2,3\\x-1,7=-2,3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{-3}{5}\end{matrix}\right.\)
\(b)\left|x\right|+\dfrac{3}{4}-\dfrac{1}{3}=0\)
\(\Rightarrow\left|x\right|+\dfrac{3}{4}=0+\dfrac{1}{3}\)
\(\Rightarrow\left|x\right|+\dfrac{3}{4}=\dfrac{1}{3}\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{3}{4}=\dfrac{1}{3}\\x+\dfrac{3}{4}=\dfrac{-1}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-5}{12}\\x=\dfrac{-13}{12}\end{matrix}\right.\)
Chúc bạn học tốt!