K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : \(x+y=3\Rightarrow\left(x+y\right)^2=3^2=9\)

\(=x^2+2xy+y^2=9\)

\(\Rightarrow x^2+y^2+2.2=9\)

\(\Rightarrow x^2+y^2+4=9\)

\(\Rightarrow x^2+y^2=5\)

Ta có : \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=3\left(x^2+y^2-2\right)\)

\(=3\left(5-2\right)=3.3=9\)

14 tháng 10 2018

1) Nhờ sự trợ giúp đắc lực từ máy tính casio ta tìm được ngay kết quả

\(\left(2x+3\right)^2+\left(2x+5\right)^2-2\left(2x+3\right)\left(2x+5\right)=4\forall x\).Đã có kết quả,nhưng bài làm vẫn là thứ không thể thiếu:

Ta có: \(\left(2x+3\right)^2+\left(2x+5\right)^2-2\left(2x+3\right)\left(2x+5\right)\)

\(=4x^2+6x+9+4x^2+10x+25-\left(4x+6\right)\left(2x+5\right)\)

\(=4x^2+6x+9+4x^2+10x+25-2x\left(4x+6\right)+5\left(4x+6\right)\)

\(=4x^2+6x+9+4x^2+10x+25-8x^2+12x+20x+30=4\) (tới bước này mình tính ngoài giấy nháp rồi ra kết quả luôn nhé)

14 tháng 10 2018

Chết,nhầm =((( buồn ghê =((((sorry bạn nhé!

30 tháng 11 2017

Bài 1 

a)  (6x4y2 - 3x3y3) : 3x3y2 = 6x4y2  : 3x3y2 - 3x3y3 : 3x3y2 = 2x - y

b)  (2x - 1)(x2 - x + 3) = 2x3 - 2x2 + 6x - x2 + x - 3 = 2x3 - 3x2 + 7x - 3

Bài 2

1)     (x - 2)2 - (x - 3)2 = (x - 2 - x + 3)(x - 2 + x - 3) = 2x - 5>

2)     4x2 - 4xy + 2y2 + 1 = (4x2 - 4xy + y2) + y2 + 1 = (2x - y)2 + y2 + 1 > 0 

vì \(\hept{\begin{cases}\left(2x-y\right)^2\ge0\\y^2\ge0\end{cases}}\)

15 tháng 9 2018

a) x3 + 2x2 + x

= x3 + x2 + x2 + x

= x2 ( x + 1 ) + x ( x + 1 )

= ( x2 + x ) ( x + 1 )

15 tháng 9 2018

a)=x(x2+2x)

b)=x(x2+2xy+y2-9)

d)=x(x2-3x+2)

23 tháng 10 2016

kết quả thôi nha

23 tháng 10 2016

umk nhanh nha bạn

25 tháng 9 2021

Mình đang cần gấp

4 tháng 8 2018

Ik mk nha, hôm nay ngày mai, ngày kia mk ik 3 lần lại cho bạn (thành 9 lần)

Nhớ kb với mìn lun nha!! Mk rất vui đc làm quen vs bạn, cảm ơn mn nhìu lắm

4 tháng 8 2018

a) \(A=x^2-8x+17=\left(x-4\right)^2+1\ge1\)

Vậy MIN A = 1   khi  x = 4

b) \(T=x^2-4x+7=\left(x-2\right)^2+3\ge3\)

Vậy MIN T = 3   khi  x = 2

c)  \(H=3x^2+6x-1=3\left(x+1\right)^2-4\ge-4\) 

Vậy MIN H = -4  khi   x = -1

d)  \(E=x^2+y^2-4\left(x+y\right)+16=\left(x-2\right)^2+\left(y-2\right)^2+8\ge8\)

Vậy MIN E = 8   khi  x = y = 2

e) \(K=4x^2+y^2-4x-2y+3=\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1\)

Vậy MIN  K = 1    khi  x = 1/2;  y = 1

f) \(M=\frac{3}{2}x^2+x+1=\frac{3}{2}\left(x+\frac{1}{3}\right)^2+\frac{5}{6}\ge\frac{5}{6}\)

Vậy MIN   M = 5/6  khi  x = -1/3

1 tháng 11 2018

1. Thực hiện phép chia đa thức: ta có kết quả:

\(x^3+5x^2+3x+a=\left(x+3\right)\left(x^2+2x+b\right)+\left(-3-b\right)x+a-3b\)

Để f(x) chia hết cho x2+2x+b thì -3-b=0 và a-3b=0 <=> b=-3; a=-9