K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2019

Bài 1 :

a) \(C=\frac{-4}{\left(2x-3\right)^2+5}\)

Vì \(\left(2x-3\right)^2\ge0\forall x\)

\(\Rightarrow C\ge\frac{-4}{5}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow2x-3=0\Leftrightarrow x=\frac{3}{2}\)

Vậy....

b) \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

\(\Rightarrow\left(a+b\right)\left(c-a\right)=\left(c+a\right)\left(a-b\right)\)

\(\Leftrightarrow ac-a^2+bc-ab=ac-bc+a^2-ab\)

\(\Leftrightarrow ac-a^2-ab-ac+ab-a^2=-bc-bc\)

\(\Leftrightarrow-2a^2=-2bc\)

\(\Leftrightarrow a^2=bc\left(đpcm\right)\)

9 tháng 2 2019

b) a+b/a-b = c+a/c-a

=> (a+b).(c-a) = (a-b).(c+a)

<=> (a+b).c - (a+b).a = (a-b).c + (a-b).a

<=> ac+bc - a^2-ba = ac-bc + a^2 - ba

<=> ac -ac + bc + bc -ba +ba = a^2 +a^2

<=> 2bc = 2a^2

<=> bc = a^2 (đccm)

Chúc bạn hc tốt 

6 tháng 1 2017

a) Vì \(\left(2x-3\right)^2\ge0\Rightarrow\left(2x-3\right)^2+5\ge5\Rightarrow C=\frac{-4}{\left(2x-3\right)^2+5}\ge-\frac{4}{5}\)

<=>\(C_{min}=-\frac{4}{5}\Leftrightarrow\left(2x-3\right)^2=0\Leftrightarrow2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)

Vậy C đạt GTNN là -4/5 tại x=3/2

b) \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\Leftrightarrow\left(a+b\right)\left(c-a\right)=\left(a-b\right)\left(c+a\right)\)

\(\Leftrightarrow ac+bc-a^2-ab=ac-bc+a^2-ab\)

\(\Leftrightarrow bc-a^2=-bc+a^2\)

\(\Leftrightarrow2bc=2a^2\)

\(\Leftrightarrow bc=a^2\) (đpcm)

10 tháng 7 2016

1) a) Ta có: \(\frac{x}{-15}=\frac{-60}{x}\) \(\Rightarrow x^2=\left(-15\right).\left(-60\right)=900\)

                                               \(\Rightarrow x=30\)

b) \(\frac{-2}{x}=\frac{-x}{\frac{8}{25}}\) \(\Rightarrow x.\left(-x\right)=\left(-2\right).\frac{8}{25}\)

                               \(\Rightarrow x.\left(-x\right)=\frac{-16}{25}\)

                                \(\Rightarrow x.\left(-x\right)=\left(\frac{-4}{5}\right).\frac{4}{5}\)

Vậy \(x=\frac{4}{5}\)

2) a) \(3,8: \left(2x\right)=\frac{1}{4}:2\frac{2}{3}\)

\(\Rightarrow3,8: \left(2x\right)=\frac{3}{32}\)

\(\Rightarrow2x=\frac{3}{32}:3,8=\frac{15}{608}\)

\(x=\frac{15}{608}:2=\frac{15}{1216}\)

Vậy \(x=\frac{15}{1216}\)

b) \(\left(0,25x\right):3=\frac{5}{6}:0,125\)

\(\Rightarrow\left(0,25x\right):3=\frac{20}{3}\)

\(\Rightarrow0,25x=\frac{20}{3}.3=20\)

\(\Rightarrow x=20:0,25=80\)

Vậy x = 80

c) \(0,01:2,5=\left(0,75x\right):0,75\)

\(\Rightarrow\frac{1}{250}=\left(0,75x\right):0,75\)

\(\Leftrightarrow0,75x=\frac{1}{250}.0,75=\frac{3}{1000}\)

\(\Rightarrow x=\frac{3}{1000}:0,75=\frac{1}{250}\)

Vậy \(x=\frac{1}{250}\)

d) \(1\frac{1}{3}:0,8=\frac{2}{3}:\left(0,1x\right)\)

\(\Rightarrow\frac{5}{3}=\frac{2}{3}:\left(0,1x\right)\)

\(\Rightarrow0,1x=\frac{5}{3}.\frac{2}{3}=\frac{10}{9}\)

\(\Rightarrow x=\frac{10}{9}:0,1=\frac{100}{9}\)

Vậy \(x=\frac{100}{9}\)

10 tháng 7 2016

a) \(\frac{x}{-15}=\frac{-60}{x}\Leftrightarrow x.x=-15.\left(-60\right)\Leftrightarrow x^2=900\Leftrightarrow x^2=\orbr{\begin{cases}30^2\\\left(-30\right)^2\end{cases}}\Leftrightarrow x=\orbr{\begin{cases}30\\-30\end{cases}}\)

1 tháng 11 2018

1. a, \(2^{x+2}.3^{x+1}.5^x=10800\)

\(2^x.2^2.3^x.3.5^x=10800\)

\(\Rightarrow\left(2.3.5\right)^x.12=10800\)

\(\Rightarrow30^x=\frac{10800}{12}=900\)

\(\Rightarrow30^x=30^2\)

\(\Rightarrow x=2\)

b,\(3^{x+2}-3^x=24\)

\(\Rightarrow3^x\left(3^2-1\right)=24\)

\(\Rightarrow3^x.8=24\)\(\Rightarrow3^x=3^1\Rightarrow x=1\)

2, c, Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

Dấu bằng xảy ra khi \(ab\ge0\)

Ta có: \(\left|x-2017\right|=\left|2017-x\right|\)

 \(\Rightarrow\left|x-1\right|+\left|2017-x\right|\ge\left|x-1+2017-x\right|\)\(=\left|2016\right|=2016\)

Dấu bằng xảy ra khi \(\left(x-1\right)\left(2017-x\right)\ge0\)\(\Rightarrow2017\ge x\ge1\)

Vậy \(Min_{BT}=2016\)khi \(2017\ge x\ge1\)

d, Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\forall a,b\inℝ\)

Dấu bằng xảy ra khi \(b\left(a-b\right)\ge0\)

Ta có \(B=\left|x-2018\right|-\left|x-2017\right|\le\left|x-2018-x+2017\right|\)

\(\Rightarrow B\le1\)

Dấu bằng xảy ra khi \(\left(x-2017\right)\left[\left(x-2018\right)-\left(x-2017\right)\right]\ge0\)

\(\Rightarrow x\le2017\)

Vậy \(Max_B=1\) khi \(x\le2017\)

1 tháng 11 2018

để BT \(\frac{5}{\sqrt{2x+1}+2}\) nguyên thì \(\sqrt{2x+1}+2\inƯ\left(5\right)\)

suy ra \(\sqrt{2x+1}+2\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow\sqrt{2x+1}\in\left\{-7;-3;-1;3\right\}\)

Mà \(\sqrt{2x+1}\ge0\) nên \(\sqrt{2x+1}\)chỉ có thể bằng 3

\(\Rightarrow2x+1=9\Rightarrow x=4\)( thỏa mãn điều kiện \(x\ge-\frac{1}{2}\))

Đây là cách lớp 9. Mk đang phân vân ko biết giải theo cách lớp 7 thế nào!!!!

8 tháng 7 2016

Bài 1: Ta có:  \(\frac{x}{4}=\frac{y}{7}\Rightarrow7x=4y\) (1)

=> 7xy=4yy

=> 7.112=4.y2

=> y2=784:4

=> y2=196.

Mà vì 196= 14.14  => y=14  (2)

TỪ (1) và (2)  => 14.4=x.7

=> x=56:7=8

Vậy x=8;y=14

14 tháng 6 2016

Giả sử tất cả các tỷ lệ thức đều có nghĩa.

Từ: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)

Và suy ra: \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\)

Và Từ: \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\)

1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)  2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344c, Tìm 3 số x,y,z...
Đọc tiếp

1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)  

2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0

b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344

c, Tìm 3 số x,y,z biết \(\frac{7}{2x+2}\)=\(\frac{3}{2y-4}\)=\(\frac{5}{x+4}\) và x+y+z=17

3.a, Cho tỉ lệ thức \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\) .CMR: c=0 hoặc b=0

b,Cho x,y là các số nguyên tố dương sao cho A=\(\frac{x^4+y^4}{15}\) cũng là số nguyên dương . CMR ; x,y đều chia hết cho 3 và 5. Từ đó tìm ra giá trị nhỏ nhất của A

c, cho các số a,b,c đôi một khác nhau và khác 0, thỏa mãn \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\) . hãy tìm giá trị biểu thức : P=\(\left(1+\frac{c}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

2
19 tháng 12 2019

1) Ta có : \(\frac{2016a+b+c+d}{a}=\frac{a+2016b+c+d}{b}=\frac{a+b+2016c+d}{c}=\frac{a+b+c+2016d}{d}\)

Trừ 4 vế với 2015 ta được : \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Nếu a + b + c + d = 0

=> a + b = -(c + d)

=> b + c = (-a + d) 

=> c + d = -(a + b)

=> d + a = (-b + c)

Khi đó M = (-1) + (-1) + (-1) + (-1) = - 4

Nếu a + b + c + d\(\ne0\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)

Khi đó M = 1 + 1 + 1 + 1 = 4

2) a) Ta có : \(\hept{\begin{cases}\left|x+2013\right|\ge0\forall x\\\left(3x-7\right)^{2004}\ge0\forall y\end{cases}\Rightarrow\left|x+2013\right|+\left(3x-7\right)^{2014}\ge0}\)

Dấu "=" xảy ra \(\hept{\begin{cases}x+2013=0\\3y-7=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2013\\y=\frac{7}{3}\end{cases}}}\)

b) 72x + 72x + 3 = 344

=> 72x + 72x.73 = 344

=> 72x.(1 + 73) = 344

=> 72x  = 1

=> 72x = 70

=> 2x = 0 => x = 0

c) Ta có :

 \(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{x+4}\Leftrightarrow\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2x+8}=\frac{7-10}{2x+2-2x-8}=\frac{1}{2}\)(dãy tỉ số bằng nhau)

=>  2x + 2 = 14 => x = 6 ; 

2y - 4 = 6 => y = 5 ; 

6 + 5 + z = 17 => z = 6 

Vậy x = 6 ; y = 5 ; z = 6

3) a) Ta có : \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)(dãy ti số bằng nhau) 

=> a + b + c = a + b - c => a + b + c - a - b + c = 0 => 2c = 0 => c = 0;  

Lại có : \(\frac{a+b+c}{a+b-c}-1=\frac{a-b+c}{a-b-c}-1\Leftrightarrow\frac{2c}{a+b-c}=\frac{2c}{a-b-c}\Rightarrow a+b-c=a-b-c\) => b = 0 

Vậy c = 0 hoặc b = 0

c) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b+b+c+a+c}{c+a+b}=2\)(dãy tỉ số bằng nhau) 

=> \(\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}\)

Khi đó P = \(\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{b}{a}\right)=\frac{b+c}{b}.\frac{c+a}{c}=\frac{a+b}{a}=\frac{2a.2b.2c}{abc}=8\)

Vậy P = 8

9 tháng 1 2020

2. b) \(7^{2x}+7^{2x+3}=344\)

        \(7^{2x}\cdot\left(1+7^3\right)=344\)

        \(7^{2x}\cdot\left(1+343\right)=344\)

        \(7^{2x}\cdot344=344\)

               \(7^{2x}=1\)  

               \(7^{2x}=7^0\)

              \(2x=0\)

               \(x=0\)

NV
14 tháng 3 2019

1/ \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{a^2+c^2}{b^2+d^2}\)

2/ \(\frac{2x-31}{2x-1}=\frac{2x-1-30}{2x-1}=1-\frac{30}{2x-1}\Rightarrow30⋮\left(2x-1\right)\)

\(\Rightarrow2x-1=Ư\left(30\right)\) , mà x nguyên dương \(\Rightarrow2x-1\ge1\), \(2x-1\) lẻ

\(\Rightarrow2x-1=\left\{1;3;5;15\right\}\Rightarrow x=\left\{1;2;3;8\right\}\)

3/ \(\left\{{}\begin{matrix}2\left(x-2y\right)^{2016}\ge0\\3\left|y+\frac{1}{2}\right|\ge0\end{matrix}\right.\) \(\Rightarrow B\ge0+0-2015=-2015\)

\(\Rightarrow B_{Min}=-2015\) khi \(\left\{{}\begin{matrix}x-2y=0\\y+\frac{1}{2}=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=-\frac{1}{2}\end{matrix}\right.\)

4/ Nếu \(a\ge2\Rightarrow\overline{abcd}.9\ge2000.9=18000>\overline{dcba}\) (loại)

\(\Rightarrow a=1\Rightarrow\overline{1bcd}.9=\overline{dcb1}\)

\(\Rightarrow d=9\Rightarrow\overline{1bc9}.9=\overline{9cb1}\)

\(\Rightarrow\left(1000+\overline{bc}+9\right).9=\left(9000+\overline{cb}+1\right)\)

\(\Rightarrow\overline{bc}=\overline{cb}-80\Rightarrow c\ge8\Rightarrow\left[{}\begin{matrix}c=9\\c=8\end{matrix}\right.\)

\(\overline{dcba}⋮9\Rightarrow a+b+c+d⋮9\)

Nếu \(b\ge2\Rightarrow\overline{abcd}.9\ge1200.9=10800>\overline{dcba}\) (vô lý) \(\Rightarrow b< 2\)

- Với \(c=9\Rightarrow1+b+9+9=19+b⋮9\Rightarrow b=8>2\left(l\right)\)

- Với \(c=8\Rightarrow1+b+8+9=18+b⋮9\Rightarrow b=0\Rightarrow\overline{abcd}=1089\)

Thử lại: \(1089.9=9801\) (thỏa mãn)

14 tháng 3 2019

khó quá nhỉ T-T

31 tháng 3 2017

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)