Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(21x^2+21y^2+z^2\)
\(=18\left(x^2+y^2\right)+z^2+3\left(x^2+y^2\right)\)
\(\ge9\left(x+y\right)^2+z^2+3.2xy\)
\(\ge2.3\left(x+y\right).z+6xy\)
\(=6\left(xy+yz+zx\right)=6.13=78\)
Dấu "=" xảy ra <=> x = y ; 3(x+y) = z; xy + yz + zx= 13 <=> x = y = 1; z= 6
2) \(x+y+z=3xyz\)
<=> \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=3\)
Đặt: \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)=> ab + bc + ca = 3
Ta cần chứng minh: \(3a^2+b^2+3c^2\ge6\)
Ta có: \(3a^2+b^2+3c^2=\left(a^2+c^2\right)+2\left(a^2+c^2\right)+b^2\)
\(\ge2ac+\left(a+c\right)^2+b^2\ge2ac+2\left(a+c\right).b=2\left(ac+ab+bc\right)=6\)
Vậy: \(\frac{3}{x^2}+\frac{1}{y^2}+\frac{3}{z^2}\ge6\)
Dấu "=" xảy ra <=> a = c = \(\sqrt{\frac{3}{5}}\); \(b=2\sqrt{\frac{3}{5}}\)
khi đó: \(x=z=\sqrt{\frac{5}{3}};y=\sqrt{\frac{5}{3}}\)
a/x +b/y +c/z =0 ->ayz+bxz+cxz=0
x/a + y/b + z/c=1 ->(x/a +y/b +z/c)^2=1
x^2/a^2 + y^2/b^2 + z^2/c^2 +2(xy/ab +yz/bc +xz/ac)=1
x^2/a^2 + y^2/b^2 + z^2/c^2 =1- 2* ayz+bxz+cxz/abc=1-2*0=1-0=1 =>ĐPCM
k hộ mik nha
#)Giải :
\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\rightarrow ayz+bxz+cxy=0\)
\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\rightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1-2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1-2\frac{ayz+bxz+cxy}{abc}=1-2.0=1\left(đpcm\right)\)
#~Will~be~Pens~#
\(1.a,Q=\frac{x+3}{2x+1}-\frac{x-7}{2x+1}=\frac{x+3}{2x+1}+\frac{7-x}{2x+1}\)
\(=\frac{x+3+7-x}{2x+1}=\frac{10}{2x+1}\)
\(b,\) Vì \(x\inℤ\Rightarrow\left(2x+1\right)\inℤ\)
Q nhận giá trị nguyên \(\Leftrightarrow\frac{10}{2x+1}\) nhận giá trị nguyên
\(\Leftrightarrow10⋮2x+1\)
\(\Leftrightarrow2x+1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Mà \(\left(2x+1\right):2\) dư 1 nên \(2x+1=\pm1;\pm5\)
\(\Rightarrow x=-1;0;-3;2\)
Vậy.......................
Với \(b=\frac{3-\sqrt{5}}{2}\) => \(\sqrt{b}=\sqrt{\frac{6-2\sqrt{5}}{4}}=\frac{\sqrt{5}-1}{2}\)=> \(\sqrt{b}=1-b\)(*)
Áp dụng bất đẳng thức cosi ta có :
\(x^2+by^2\ge2xy\sqrt{b}\)
\(x^2+bz^2\ge2xz\sqrt{b}\)
\(\left(1-b\right)y^2+\left(1-b\right)z^2\ge2\left(1-b\right)yz\)
Cộng 3 vế của BĐT và kết hợp với (*) ta có
\(2x^2+y^2+z^2\ge2\sqrt{b}\left(xy+yz+xz\right)=2\sqrt{b}\)=> \(MinA=2\sqrt{b}\)với \(b=\frac{3-\sqrt{5}}{2}\)
Dấu bằng xảy ra khi \(y=z=\frac{x}{\sqrt{b}}\)và xy+yz+xz=1
=> \(x=\sqrt{\frac{b\sqrt{b}}{2b+\sqrt{b}}};y=z=\sqrt{\frac{\sqrt{b}}{2b+\sqrt{b}}}\)với \(b=\frac{3-\sqrt{5}}{2}\)
Ta có : \(x^2-xy=y^2-yz=z^2-zx\)Cộng 3 vế , suy ra :
\(x^2-xy+y^2-yz+z^2-zx=0\)\(< =>\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
Do \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(z-x\right)^2\ge0\end{cases}< =>\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0}\)
Dấu = xảy ra khi và chỉ khi \(\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}< =>x=y=z}\)
Khi đó ta được : \(M=\frac{x}{z}+\frac{z}{y}+\frac{y}{x}=1+1+1=3\)( do x=y=z )
BÀI 1:
a) \(ĐKXĐ:\) \(\hept{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}}\) \(\Leftrightarrow\)\(\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)
b) \(A=\left(\frac{2}{x-2}-\frac{2}{x+2}\right).\frac{x^2+4x+4}{8}\)
\(=\left(\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right).\frac{\left(x+2\right)^2}{8}\)
\(=\frac{2x+4-2x+4}{\left(x-2\right)\left(x+2\right)}.\frac{\left(x+2\right)^2}{8}\)
\(=\frac{x+2}{x-2}\)
c) \(A=0\) \(\Rightarrow\)\(\frac{x+2}{x-2}=0\)
\(\Leftrightarrow\) \(x+2=0\)
\(\Leftrightarrow\)\(x=-2\) (loại vì ko thỏa mãn ĐKXĐ)
Vậy ko tìm đc x để A = 0
p/s: bn đăng từng bài ra đc ko, mk lm cho