Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
1. a, 5\(^{2x-3}\)-2.5\(^2\)=5\(^2\).3
5\(^{2x}\) : 5\(^3\) -2.25 = 25.3
5\(^{2x}\): 5\(^3\) - 50 = 75
5\(^{2x}\): 5\(^3\) = 75+50
5\(^{2x}\): 5\(^3\) = 125
5\(^{2x}\) = 125.5\(^3\)
5\(^{2x}\) = 5\(^3\). 5\(^3\)
5 \(^{2x}\) = 5\(^{3+3}\)
5 \(^{2x}\) = 5\(^6\)
Có 5=5 => 2x = 6
x = 6 : 2
x = 3
Vậy x = 3.
b. / 2x -1 / = 5
=> 2x-1 = 5 hoặc 2x-1 = -5
* Với 2x - 1 = 5
thì 2x = 5+1
2x = 6
x = 6:2
x = 3
* Với 2x - 1 = - 5
thì 2x = -5 + 1
2x = -4
x = -4 : 2
x = -2
Câu 2:
25.20,04 + 75.20, 04 - 2004.20,03 + 2004.20,04
= 20,04(25 + 75 - 2003 + 2004)
= 20,04.101 = 2024,04
C3: A=\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{2011\cdot2013}+\frac{2}{2013\cdot2015}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2013}-\frac{1}{2015}\)
\(=\left(\frac{1}{3}-\frac{1}{2015}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)+...+\left(\frac{1}{2013}-\frac{1}{2013}\right)\)
\(=\left(\frac{2015}{6045}-\frac{3}{6045}\right)+0+...+0=\frac{2012}{6045}\)
mấy câu kia mình lười làm lắm bạn
Chúc bạn học tốt!^_^
a) Ta thấy ƯCLN(a,b)=8 và BCNN(a,b)=48 => ƯCLN(a,b) . BCNN(a,b) = a . b = 8 . 48 = 384
Vì ƯCLN(a,b) = 8, nên ta đặt:
a = 8.c; b = 8.d; ƯCLN(c,d) = 1
theo bài ta có:
a . b = 384
hay:8.c . 8.d = 384
=> 64 . c.d = 384
c.d = 6
ta có bảng :
c 1 2
d 6 3
nếu c=1 và d=6 thì a=8 và b=48 hoặc a=48 và b=8
c=2 và d=3 thì a=16 và b=24 hoặc a=24 và b=16
kết luận tự làm
còn lại để hôm khác
b)
(+) Hiển nhiên A chia hết cho 6 vì các số hạng của S đều chia hết cho 6 (1)
(+) Ta có:\(S=6+6^2+6^3+....+6^{100}\)
\(S=\left(6+6^2\right)+\left(6^3+6^4\right)+....+\left(6^{99}+6^{100}\right)\)
\(S=6.\left(1+6\right)+6^3.\left(1+6\right)+.....+6^{99}.\left(1+6\right)\)
\(S=6.7+6^3.7+.....+6^{99}.7=\left(6+6^3+...+6^{99}\right).7\)
=>S chia hết cho 7 (2)
Từ (1) và (2) ;kết hợp với (6;7)=1
=>S chia hết cho 42 (đpcm)