K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2015

gọi x;y;z lần lượt là số máy lần lượt của 3 đội (x;y;z>0)

theo đề ta thấy: số máy tỉ lệ nghịch với số ngày hoàn thành công việc

=> x.4=y.6=z.8 và x-y=2

=>\(\frac{x}{6}=\frac{y}{4};\frac{y}{8}=\frac{z}{6}\)

=>\(\frac{x}{48}=\frac{y}{32}=\frac{z}{24}\)

áp dung tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{48}=\frac{y}{32}=\frac{z}{24}=\frac{x-y}{48-32}=\frac{2}{16}=0,125\)

suy ra: \(\frac{x}{48}=0,125\Rightarrow x=6\)

\(\frac{y}{32}=0,125\Rightarrow y=4\)

\(\frac{z}{24}=0,125\Rightarrow z=3\)

Vậy số máy 3 đội là: *đội thứ nhất : 6 máy

*đội thứ 2: 4 máy

*đội thứ 3: 3 máy

20 tháng 8 2015

gọi số máy của đội thứ nhất, đội thứ hai, đội thứ ba là:

      x,y,z ( x,y,z thuộc N*)

vì các máy có cùng năng xuất nên số máy và số ngày là hai đại lượng tỉ lệ nghịch , do đó ta có:

 4x=6y=8z hay \(\frac{x}{\frac{1}{4}}=\frac{y}{\frac{1}{6}}=\frac{z}{\frac{1}{8}}=\frac{x-y}{\frac{1}{4}-\frac{1}{6}}=\frac{2}{\frac{3-2}{12}}=\frac{2.12}{1}=24\)

do đó: \(\frac{x}{\frac{1}{4}}=24\Rightarrow x=24.\frac{1}{4}=6\)

            \(\frac{y}{\frac{1}{6}}=24\Rightarrow x=24.\frac{1}{6}=4\)

             \(\frac{z}{\frac{1}{8}}=24\Rightarrow x=24.\frac{1}{8}=3\)

21 tháng 10 2021

Do đội thứ nhất làm nhanh nhất nên số máy là lớn nhất và đội thứ 3 làm chậm nhất nên có số máy là ít nhất.

Gọi số máy của 3 đội lần lượt là x,y,z. Do càng nhiều máy thì thời gian hoàn thành công việc càng nhanh (thời gian hoàn thành công việc ít đi), nên số máy và thời gian hoàn thành công việc là hai đại lượng tỉ lệ nghịch, ta có:

x13=y14=z16

Lại có số máy đội thứ nhất nhiều hơn đội thứ 2 là 2 máy nên

xy=2

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

x13=y14=z16=xy13−14=2112=24

Do đó,

x=24.13=8, y=24.14=6, z=2416=4

Vậy đội 1 có 8 máy, đội 2 có 6 máy và đội 3 có 4 máy.

18 tháng 4 2017

Một số bài toán về đại lượng tỉ lệ nghịch

5 tháng 12 2017

Theo bài ta có số máy và số ngày của mỗi đội là 2 đại lượng tỉ lệ nghịch nên ta có :

4.x\(_1\)=6.x\(_2\)=8.x\(_3\) và x\(_1\)-x\(_2\)=2

\(\Rightarrow\dfrac{x_1}{\dfrac{1}{4}}=\dfrac{x_2}{\dfrac{1}{6}}=\dfrac{x_3}{\dfrac{1}{8}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{x_1}{\dfrac{1}{4}}=\dfrac{x_2}{\dfrac{1}{6}}=\dfrac{x_3}{\dfrac{1}{8}}=\dfrac{x_1-x_2}{\dfrac{1}{4}-\dfrac{1}{6}}=\dfrac{2}{\dfrac{1}{12}}=24\)

\(\dfrac{x_1}{\dfrac{1}{4}}=24\Rightarrow x_1=24.\dfrac{1}{4}=6\)

\(\dfrac{x_2}{\dfrac{1}{6}}=24\Rightarrow x_2=24.\dfrac{1}{6}=4\)

\(\dfrac{x_3}{\dfrac{1}{8}}=24\Rightarrow x_3=24.\dfrac{1}{8}=3\)

Vậy : Đội một có 6 máy

Đội hai có 4 máy

Đội ba có 3 máy

19 tháng 12 2016

Gọi x, y, z lần lược là số máy của ba đội thứ I, II, III. theo đề bài , Ta có : x – y = 2 máy. Do cùng năng suất, số máy và ngày hoàn thành tỉ lệ nghịch với nhau nên : 4x = 6y = 8y
Theo tính chất dãy tỉ lệ thức :
x/6=y/4=z/3

=>x = 1.6 = 6 ⇒ y = 1.4 = 4 ⇒ z = 1.3 = 3
Vậy : số máy của ba đội thứ I, II, III lần lược là : 6 máy, 4 máy, 3 máy.

k mình nhá ok :)

24 tháng 12 2016

doi thu 1 la 6 may

doi thu 2 la 4 may

đội thứ 3 là 3 may

1 tháng 10 2017

Gọi số máy của ba đội theo thứ tự là :x1,x2,x3 (máy)

Theo đề bài ta có : x1-x2=2

Vì các máy có cùng năng suất nên số máy và số ngày hoàn thành công việc là hai đại lượng tỉ lệ nghịch.

Do đó ta có :4x1 = 6x2 = 8x3 hay Giải bài 21 trang 61 Toán 7 Tập 1 | Giải bài tập Toán 7

Theo tính chất của dãy tỉ số bằng nhau ta có:

Giải bài 21 trang 61 Toán 7 Tập 1 | Giải bài tập Toán 7

Giải bài 21 trang 61 Toán 7 Tập 1 | Giải bài tập Toán 7

Số máy của ba đội theo thứ tự là 6 ; 4 ; 3 (máy )

DD
30 tháng 7 2021

Gọi số máy của mỗi đội lần lượt là \(x,y,z\)(máy) \(x,y,z\inℕ^∗\)

Ta có: \(4x=6y=8z\Leftrightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x-y}{6-4}=\frac{2}{2}=1\)

\(\Leftrightarrow\hept{\begin{cases}x=1.6=6\\y=1.4=4\\z=1.3=3\end{cases}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{\dfrac{1}{4}}=\dfrac{b}{\dfrac{1}{6}}=\dfrac{c}{\dfrac{1}{8}}=\dfrac{a-b}{\dfrac{1}{4}-\dfrac{1}{6}}=24\)

Do đó: a=6; b=4; c=8

6 tháng 12 2021

   Do đội thứ nhất làm nhanh nhất nên số máy là lớn nhất và đội thứ 3 làm chậm nhất nên có số máy là ít nhất.

   Gọi số máy của 3 đội lần lượt là x, y, z. Do càng nhiều máy thì thời gian hoàn thành công việc càng nhanh ( thời gian hoàn thành công việc ít đi ), nên số máy và thời gian hoàn thành công việc là hai đại lượng tỉ lệ nghịch, ta có:

\(\dfrac{x}{\dfrac{1}{4}}=\dfrac{x}{\dfrac{1}{6}}=\dfrac{x}{\dfrac{1}{8}}\)

Lại có số máy đội thứ nhất nhiều hơn đội thứ 2 là 2 máy nên x − y = 2

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{\dfrac{1}{4}}=\dfrac{x}{\dfrac{1}{6}}=\dfrac{x-y}{\dfrac{1}{4}-\dfrac{1}{6}}=\dfrac{2}{\dfrac{1}{12}}=24\)

Do đó,

x = 24.\(\dfrac{1}{4}\) = 6,  

y = 24.\(\dfrac{1}{6}\) = 4,  

z = 24. \(\dfrac{1}{8}\) =3

Vậy đội 1 có 6 máy, đội 2 có 4 máy và đội 3 có 3 máy.