Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{3}=\dfrac{a-b}{6-4}=3\)
Do đó: a=18; b=12; c=9
Gọi số máy của đội 1 ; 2; 3 lần lượt là a; b; c ( máy)
=> a - b = 2
Do các máy có cùng năng suất và khối lượng công việc mỗi đội như nhau nên: 4a = 6b = 8c
=> \(\frac{4a}{24}=\frac{6b}{24}=\frac{8c}{24}\Leftrightarrow\frac{a}{6}=\frac{b}{4}=\frac{c}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{6}=\frac{b}{4}=\frac{c}{3}=\frac{a-b}{6-4}=\frac{2}{2}=1\)
a/6 = 1 => a = 6
b/4 = 1 => b = 4
c/3 = 1 => c = 3
Vậy số máy đội 1;2;3 lần lượt là: 6;4;3
gọi số máy cày của 3 đội lần lượt là x,y,z (máy) (x,y,z thuộc N)
Vì tổng số máy cày của 3 đội là 87 nên ta có: x+y+z=87 (máy)
Vì mỗi máy cày đều có năng suất như nhau nên ta có: 3x=5y=9z
=> x/5=y/3;y=9=z/5 (máy)
=>x/15=y=9=z/5 (máy)
ADTC dãy tỉ số = nhau ta có:
x/15=y/9=z/5=x+y+z/15+9+5=87/29=3
\(\Rightarrow\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{9}=3\\\frac{z}{5}=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=45\\y=27\\z=15\end{cases}}\left(tm\right)\)
Vậy...
Giải:
Gọi x;y;z∈N∗x;y;z∈N∗ là số máy của đội 1, đội 2 và đội 3 và aa là số ngày mà đội 3 hoành thành công việc.
Theo bài ra ta có: 4.x=6.y=a.z4.x=6.y=a.z (1) và x+y=5zx+y=5z
Từ (1) ta có:
4x24=6y24=a.z24⇔x6=y4=a.z244x24=6y24=a.z24⇔x6=y4=a.z24
Áp dụng tính chất của dãy tỉ số bằng nhau được:
x6=y4=a.z24=x+y6+4=5.z10=z2x6=y4=a.z24=x+y6+4=5.z10=z2
⇒a.z24=z2⇒a=24.z2.z=12⇒a.z24=z2⇒a=24.z2.z=12 (vì z∈N∗z∈N∗)
Vậy số ngày đội 3 hoàn thành là: 12 ngày
Hok tốt
gọi \(x,y,z\)là số máy của đội 1, đội 2, đội 3 zà \(a\\\)là số ngày mà đội 3 hoàn thành
theo bài ra ta có \(4.x=6.y=a.z\left(1\right)\)zà \(x+y=5z\)
Từ 1 ta có
\(\frac{4x}{24}=\frac{6y}{24}=\frac{a.z}{24}=>\frac{x}{6}=\frac{y}{4}=\frac{a.z}{24}\)
áp dụng tính chất = nhau ta được
\(\frac{x}{6}=\frac{y}{4}=\frac{a.z}{24}=\frac{x+y}{6+4}=\frac{5.z}{10}=\frac{z}{2}\)
=>\(\frac{a.z}{24}=\frac{z}{2}=>a=\frac{24.z}{2.z}=12\)
zậy đội 3 hoàn thành trong 12 ngày
Gọi số máy cày của 3 đội máy cày lần lượt là x1, x2, x3. Theo bài ra ta có:
x1 - x2 = 2
Vì cày trên ba cánh đồng có diện tích như nhau, số máy cày tỉ lệ nghịch với số ngày hoành thành công việc nên ta có:
4x1 = 6x2 = 8x3
=> \(\frac{x_1}{\frac{1}{4}}=\frac{x_2}{\frac{1}{6}}=\frac{x_3}{\frac{1}{8}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x_1}{\frac{1}{4}}=\frac{x_2}{\frac{1}{6}}=\frac{x_3}{\frac{1}{8}}=\frac{x_1-x_2}{\frac{1}{4}-\frac{1}{6}}=\frac{2}{\frac{1}{12}}=24\)
=> x1 = \(24.\frac{1}{4}\)= 6
x2 = \(24.\frac{1}{6}\)= 4
x3 = \(24.\frac{1}{8}\)= 3
Vậy số máy càu của 3 đội lần lượt là 6 máy cày, 4 máy cày, 3 máy cày
Chúc bạn học tốt
Gọi số máy cày của ba đội lần lượt là x;y;z (x;y;z > 0)
Vì diện tích ba cánh đồng là như nhau nên thời gian và số máy cày là hai đại lượng tỉ lệ nghịch
Theo bài ra ta có: x.4 = y.6 = z.8 và x - y = 2
Suy ra: x 6 = y 4 . Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
x 6 = y 4 = x − y 6 − 4 = 2 2 = 1
Do đó x = 6 ; y = 4
Vậy đội thứ nhất có 6 máy
Đáp án cần chọn là C
Gọi số máy đội I,II,III,II,II lần lượt là x,y,z,(x,y,z∈N)x,y,z,(x,y,z∈N)
Ta có số máy mỗi đội tỉ lệ nghịch với số ngày hoàn thành công việc, vì ba đội cày trên ba cánh đồng có diện tích như nhau
→4x=6y=8z→4x=6y=8z
→4x24=6y24=8z24→4x24=6y24=8z24
→x6=y4=z3→x6=y4=z3
Vì đội một nhiều hơn đội 22 là 66 máy
→x−y=6→x−y=6
→x6=y4=z3=x−y6−4=62=3→x6=y4=z3=x−y6−4=62=3
→x=18,y=12,z=9