K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2017

5x(x-2000)-(x-2000)=0

(x-2000)(5x-1)=0

\(\left[{}\begin{matrix}x-2000=0\\5x-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2000\\5x=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2000\\x=\dfrac{1}{5}\end{matrix}\right.\)

30 tháng 9 2017

Thanks bn ni nhìu nhé......! oaoa

17 tháng 9 2017

ta có : \(m=x^2-x+1=x^2-2.\dfrac{1}{2}.x+\left(\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\) với mọi \(x\)

\(\Rightarrow\) giá trị nhỏ nhất của \(m=x^2-x+1\)\(\dfrac{3}{4}\) khi \(\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)

vậy giá trị nhỏ nhất của \(m=x^2-x+1\)\(\dfrac{3}{4}\) khi \(x=\dfrac{1}{2}\)

18 tháng 6 2017

\(\left(x+y+z\right)^2-2\left(x+y+z\right)\left(x+y\right)+\left(x+y\right)^2\)

= \(\left[\left(x+y+z\right)-\left(x+y\right)\right]^2\)

= \(z^2\)

18 tháng 6 2017

Ta có:(x + y + z)2 - 2(x + y + z) (x + y) + (x + y)2

=[(x+y+z)-(x+y)]2=z2

21 tháng 11 2017

vcl chết đi

tự mà mua sách giải

5 tháng 7 2017

\(A=\left(x+1\right)^3-\left(x+3\right)^2\left(x+1\right)+4x^2+8\)

\(A=x^3+3x^2+3x+1-\left(x^2+6x+9\right)\left(x+1\right)+4x^2+8\)

\(A=x^3+3x^2+3x+1-\left(x^3+6x^2+9x+x^2+6x+9\right)+4x^2+8\)

\(A=x^3+3x^2+3x+1-x^3-6x^2-9x-x^2-6x-9+4x^2+8\)

\(A=\left(x^3-x^3\right)+\left(3x^2-6x^2-x^2+4x^2\right)+\left(3x-9x-6x\right)+\left(1-9+8\right)\)

\(A=-12x\)

\(B=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)

\(B=x^3+2x^2+4x-2x^2-4x-8-\left(x^3+3x^2+3x+1\right)+3\left(x^2-1\right)\)

\(B=x^3+2x^2+4x-2x^2-4x-8-x^3-3x^2-3x-1+3x^2-3\)

\(B=\left(x^3-x^3\right)+\left(2x^2-2x^2-3x^2+3x^2\right)+\left(4x-4x-3x\right)+\left(-8-3-1\right)\)

\(B=-3x-12\)

Câu C tương tự.

Chúc bạn học tốt!!!

5 tháng 7 2017

A = \(\left(x+1\right)^3-\left(x+3\right)^2.\left(x+1\right)+4x^2+8\)

A = \(\left(x+1\right)\left(x+1-x-3\right)\left(x+1+x+3\right)+4x^2+8\)

A = \(\left(x+1\right).\left(-2\right).\left(2x+4\right)+4x^2+8\)

A = \(\left(-2\right)\left(2x^2+4x+2x+4\right)+4x^2+8\)

A = \(\left(-2\right)\left(2x^2+6x+4\right)+4x^2+8\)

A = \(-4x^2-12x-8+4x^2+8=-12x\)

b) B = \(\left(x-2\right)\left(x^2+2x+4\right)-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)

B = \(x^3-8-\left(x+1\right)\left(x^2+2x+1+3x-3\right)\)

B = \(x^3-8-\left(x+1\right)\left(x^2+5x-2\right)\)

B = \(x^3-8-x^3-5x^2+2x-x^2-5x+2\)

B = \(-6x^2-3x-6\)

14 tháng 9 2017

Điều kiện:

\(x-1\ne0\Rightarrow x\ne1\)

\(x^3+x\ne0\Leftrightarrow x\ne0\)

13 tháng 3 2017

a)\(\left|2x+3\right|=x+2\)

\(\Leftrightarrow\left(\left|2x+3\right|\right)^2=\left(x+2\right)^2\)

\(\Leftrightarrow4x^2+12x+9=x^2+4x+4\)

\(\Leftrightarrow3x^2+8x+5=0\)

\(\Leftrightarrow3x^2+3x+5x+5=0\)

\(\Leftrightarrow3x\left(x+1\right)+5\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\3x+5=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{5}{3}\end{matrix}\right.\)

b)\(x^2-9x+8=0\)

\(\Leftrightarrow x^2-8x-x+8=0\)

\(\Leftrightarrow x\left(x-8\right)-\left(x-8\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-8=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=8\end{matrix}\right.\)

c)\(x^2-2\left(x-2\right)=4\)

\(\Leftrightarrow\left(x^2-4\right)-2\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)-2\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2-2\right)=0\)

\(\Leftrightarrow x\left(x-2\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

13 tháng 3 2017

b/ \(x^2-9x+8=0\)

Ta có: a = 1 ; b = -9 ; c = 8

\(\Delta=b^2-4ac=\left(-9\right)^2-4.1.8=49\)

\(\Rightarrow\sqrt{\Delta}=7\)

Pt có 2 nghiệm:

\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{9+7}{2.1}=8\)

\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{9-7}{2.1}=1\)

Vậy.......................................

22 tháng 7 2017

dùng đinh lý bezou đc ko bn