Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=\frac{151}{102}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-...-\frac{1}{2550}\)
\(A=\frac{151}{102}-\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{2550}\right)\)
\(A=\frac{151}{102}-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{50.51}\right)\)
\(A=\frac{151}{102}-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{50}-\frac{1}{51}\right)\)
\(A=\frac{151}{102}-\left(\frac{1}{2}-\frac{1}{51}\right)\)
\(A=\frac{151}{102}-\frac{49}{102}\)
\(A=\frac{151-49}{102}\)
\(A=\frac{102}{102}\)
\(A=1\)
Vậy \(A=1\)
Chúc bạn học tốt ~
\(A=\frac{151}{102}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-...-\frac{1}{2550}\)
\(A=\frac{151}{102}-\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{50\cdot51}\right)\)
\(A=\frac{151}{102}-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{50}-\frac{1}{51}\right)\)
\(A=\frac{151}{102}-\left(\frac{1}{2}-\frac{1}{51}\right)\)
\(A=\frac{151}{102}-\frac{49}{102}=1\)
B=2+(4-6-8+10)+(12-14-16+18)+...+(2008-2010-2012+2014)-2016-2018
B=2+0+0+...+0-2016-2018
B=-2016-2016=-4032
T i c k nha
Đặt tổng trên là S, ta có:
S = 2+4-6-8 +10+12-14-16+18+20-22-24....-2008
S = (2+4-6-8) +(10+12-14-16)+(18+20-22-24)...(...-2008)
S = (-8)+ (-8) + (-8) +...+ (-8)
Có 10094số hạng
=> Có 1004:4= 251 số (-8)
S = (-8). 251= -2008
Vậy S = -2008
\(M=\frac{2.6.10+4.12.20+...+20.60.100}{1.2.3+2.4.6+...+10.20.30}=\frac{2.6.10.1^3+2.6.10.2^3+...+2.6.10.10^3}{1.2.3.1^3+1.2.3.2^3+...+1.2.3.10^3}\)
\(=\frac{2.6.10.\left(1^3+2^3+...+10^3\right)}{1.2.3.\left(1^3+2^3+...+10^3\right)}=\frac{2.6.10}{1.2.3}=20\)
vậy M=20
12+1 + 22+2 + 32+3 + 42+4 + ... + 482+48 + 492+49 + 502+50
= (1+2+3+4+..+48+49+50) +(12+22+32+42+...+482+492+502)
Đến đay bạn tự tính nha
a) 2; 6; 12; 20; 30
b) 4; 10; 18;28;40; 54
c) 3; 6; 11; 18; 27; 38
\(A=\frac{1\cdot2+2\cdot4+3\cdot6+4\cdot8+5\cdot10+6\cdot12}{3\cdot4+6\cdot8+9\cdot12+12\cdot16+15\cdot20+18\cdot24}\)
\(A=\frac{2\cdot3\left[1\cdot2\right]+2\cdot3\left[2\cdot4\right]+2\cdot3\left[3\cdot6\right]+2\cdot3\left[4\cdot8\right]+2\cdot3\left[5\cdot10\right]}{3\cdot4\left[3\cdot4+6\cdot8+9\cdot12+12\cdot16+15\cdot20\right]}\)
\(A=\frac{\left[3\cdot4+6\cdot8+9\cdot12+12\cdot16+15\cdot20\right]}{2\cdot3\left[3\cdot4+6\cdot8+9\cdot12+12\cdot16+15\cdot20\right]}=\frac{1}{2\cdot3}=\frac{1}{6}\)
2+(4-6-8+10)+(12-14-16+18)+...+(2004-2006-2008)
=2+0+0+...+0-2010
=2-2010
=-2008