K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2018

Xét ∆ OAD có: OE=AE; OE=FD => EF là đtb của ∆ OAD => EF=1/2AD=1/2BC (1) và EF//AD

Ta có ABCD là hình thang cân => OCDˆ=ODCˆOCD^=ODC^=60 độ ( tự lập luận)

=> ∆ ODC đều có CF là đường trung tuyến đồng thời là đường cao => CF⊥⊥BD

∆BFC vuông tại F có FG là đường trung tuyến => FG=BG=CG=BC/2( theo t/c đường trung tuyến trong ∆ vuông) (2)

Chứng minh tương tự: EG=BC/2 (3)

Từ (1) ; (2) và (3) => FG=EF=EG => ∆ EFG đều

Nhấn đúng cho mình nha    ^3^

1 tháng 1 2018

Giải bài 2 trang 131 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 2 trang 131 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 2 trang 131 SGK Toán 8 Tập 2 | Giải toán lớp 8

Đây là câu trả lời đầy đủ của mình 

Hãy ấn đúng cho mình nha các bạn ^3^

14 tháng 6 2018

a) Xét Tứ giác DEBF ta có:

EB // DF ( vì AB // CD )

EB = DF ( vì = \(\frac{1}{2}\) AB và DC ( AB =DC) ) [ nếu không đúng cách trình bày thì bạn có thể sửa  lại câu từ cho hay]

\(\Rightarrow\)tứ giác DEBF là hbh

3 tháng 5 2018

Trả lời

Xét tam giác OAD ta có: OE=AE; OE=FD \(\Rightarrow\)EF là ĐTB của tam giác OAD

\(\Rightarrow EF=\frac{1}{2}AD=\frac{1}{2}BC\left(1\right)\)và EF//AD

Ta có tam giác ABCD là tâm giác cân \(\Rightarrow\widehat{OCD}\)\(=\widehat{ODC}\)=\(60^0\)(tự lập luận)

Ta có: Tam giác ODC đều có CF là đường trung tuyến đồng thời là đường cao

\(\Rightarrow CF\perp BD\)

Tam giác BFC vuông tại F có FG là đường trung tuyến

\(\Rightarrow FG=CG=BG=\frac{BC}{2}\)(Theo t/c đường trung tuyến trong \(\Delta\)vuông)(2)

Chứng minh tường tự: EG=\(\frac{BC}{2}\left(3\right)\)

\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow FG=EF=EG\Rightarrow\Delta EFG\)là tam giác đều

3 tháng 5 2018

Em cop mạng hay ghê không 1 chút sửa đổi a thánh phcuj

30 tháng 5 2017

A D C B E O F M N

a) Trong tứ giác DEBF có:

Hai đường chéo BD và EF cắt nhau tại trung điểm O

Các cạnh đối BE và DF bằng nhau

\(\Rightarrow\) Tứ giác DEBF là hình bình hành.

b) Gọi O là giao điểm hai đường chéo của hình bình hành ABCD, ta có O là trung điểm của BD.

Theo câu a), DEBF là hình bình hành nên trung điểm O của BD cũng là trung điểm của EF.

Vậy AC, BD, EF cùng cắt nhau tại điểm O.

c) \(\Delta ABD\) có các đường trung tuyến AO, DE cắt nhau ở M nên OM = \(\dfrac{1}{3}\) OA.

\(\Delta CBD\) có các đường trung tuyến CO, BF cắt nhau ở N nên ON = \(\dfrac{1}{3}\) OC.

Tứ giác EMFN có các đường chéo cắt nhau tại trung điểm của mỗi đường OM = ON, OE = OF nên là hình bình hành.

3 tháng 11 2018

Bạn kham khảo nha

Ôn tập : Tứ giác

17 tháng 5 2022

 

Tham kHẢO 1;

- Vẽ hình đúng để làm được ý a

[Năm 2021] Đề thi Học kì 1 Toán lớp 8 có đáp án (6 đề)

0,25

 

 

 

 

a) (1 điểm)

- Chỉ ra được tứ giác DEBF là hình bình hành

 

1.0

b) (0,75 điểm). Gọi O là giao điểm của AC và BD

- Chỉ ra trong hbh ABCD có O là trung điểm O của AC và BD  (1)

- Chỉ ra trong hbh có BD cắt EF tại trung điểm của mỗi đường. Mà O là trung điểm của BD nên O là trung điểm của EF      (2)

- Từ (1) và (2) ⇒ đpcm

 

0.25

 

0.25

0.25

c) (1 điểm)

- Chỉ ra được M là  trọng tâm của ΔABD ⇒ OM = [Năm 2021] Đề thi Học kì 1 Toán lớp 8 có đáp án (6 đề)OA

- Chỉ ra được N là trọng tâm của ΔBCD ⇒ ON = [Năm 2021] Đề thi Học kì 1 Toán lớp 8 có đáp án (6 đề)OC

- Mà OA = OC ⇒ OM = ON 

⇒ đpcm

14 tháng 12 2022

Xét ΔOAD có OE/OA=OF/OD

nên EF//AD và EF=AD/2=BC/2

Xét ΔADC và ΔBCD có

AD=BC

DC chung

AC=BD

DO đó: ΔADC=ΔBCD
=>góc ODC=góc OCD=60 đọ

=>ΔODC đều

mà CF là trung tuyến

nên CF vuông góc với BD

ΔBFC vuông tại F 

mà FG là trung tuyến

nên FG=BC/2

Xét ΔOAB có góc OBA=góc OAB và góc AOB=60 độ

nên ΔOAB đều

mà BE là trung tuyến

nên BE vuông góc với CE

ΔBEC vuông tại E

mà EG là trung tuyến

nên EG=BC/2

=>EG=EF=FG

=>ΔEFG đều

14 tháng 12 2022

Xét ΔOAD có OE/OA=OF/OD

nên EF//AD và EF=AD/2=BC/2

Xét ΔADC và ΔBCD có

AD=BC

DC chung

AC=BD

DO đó: ΔADC=ΔBCD
=>góc ODC=góc OCD=60 đọ

=>ΔODC đều

mà CF là trung tuyến

nên CF vuông góc với BD

ΔBFC vuông tại F 

mà FG là trung tuyến

nên FG=BC/2

Xét ΔOAB có góc OBA=góc OAB và góc AOB=60 độ

nên ΔOAB đều

mà BE là trung tuyến

nên BE vuông góc với CE

ΔBEC vuông tại E

mà EG là trung tuyến

nên EG=BC/2

=>EG=EF=FG

=>ΔEFG đều

5 tháng 8 2017

a) Tứ giác DEBF là hình bình hành vì có 2 cạnh đối nhau, song song và bằng nhau.

b) Vì DEBF là hình bình hành nên EF  và BD giao nhau tại trung điểm của BD.

    Vì ABCD cũng là hình bình hành nên AC và BD cũng giao nhau tại trung điểm của BD.

=> AC, BD, EF là đồng quy.

c) Gọi O là giao điểm của AC và BD.

Tam giác ABD có M là trọng tâm.

=>ME = 1/3 DE

Chứng minh tương tự trong tam giác BCD 

=> NF = 1/3 BF

Mà DE = BF ( do DEBF là hình bình hành ) 

=> ME = NF và ME // NF ( vì DE // BF ) 

=> EMFN là hình bình hành.

a: Xét tứ giác DEBF có

BE//DF

BE=DF

Do đó: DEBF là hình bình hành

b: ta có: DEBF là hình bình hành

nên Hai đường chéo DB và EF cắt nhau tại trung điểm của mỗi đường(1)

Ta có:ABCD là hình bình hành

nên hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường(2)

Từ (1) và (2) suy ra BD,EF,AC đồng quy