Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M=1+3+3^2+3^3+^3+...+3^118+3^119
=(1+3+3^2)+(3^3+3^4+3^5)+...+(3^117+3^118+3^119)
=13+3^3(1+3+3^2)+...+3^117(1+3+3^2)
=13+3^3.13+..+3^117.13
=13(1+3^3+...+3^117) chia hết cho 13
Vậy Mchia hết cho 13
ai chơi truy kích thì kết bạn vs mình nha
rồi khi nào tạo phòng solo đao phong chibi với nhau 1 ván
A = 3 + 32 + 34 + 35 + 36 + ..... +3117 + 3118 + 3119 + 3120
3A = 32 + 34 + 35 + 36 + ..... +3117 + 3118 + 3119 + 3120 + 3121
3A - A = ( 32 + 34 + 35 + 36 + ..... +3117 + 3118 + 3119 + 3120 + 3121 ) - ( 3 + 32 + 34 + 35 + 36 + ..... +3117 + 3118 + 3119 + 3120 )
2A = 3121 - 3
A = ( 3121 - 3 ) : 2 chia hết cho 2
Vậy A chia hết cho 2
A = 3 +32+33+34+35+36+...+3117+3118+3119+3120
A = (3+32) + (33+34) + (35+36)+ ...+ (3177+3118) + (3119+3120)
A= 3 . (1+3) + 33(1+3 )+ 37 ( 1+3 ) +...+3117 ( 1+3 ) + 3119 ( 1+3 )
A=3. 4 + 33 . 4 + 35 . 4 + ...+ 3119 . 4
A =4. ( 3+33 + 35 + ... + 3119 ) ⋮ 2
( vì trong tích trên có thừa số 4 , mà trong tích nếu có bất kì số nào đó chia hết cho a thì tích đó chia hết cho a . Vậy tích trên có chữ số 4 vì vậy tích đó chia hết cho 2 )
Bài 1 : \(A=1+3+3^2+...+3^{31}\)
a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)
\(\Rightarrow A=13+3^9.13\)
\(\Rightarrow A=13.\left(1+...+3^9\right)\)
\(\Rightarrow A⋮13\)
b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=40+...+3^8.40\)
\(\Rightarrow A=40.\left(1+...+3^8\right)\)
\(\Rightarrow A⋮40\)
Bài 2:
Ta có: \(C=3+3^2+3^4+...+3^{100}\)
\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)
\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)
\(\Rightarrow3.40+...+3^{97}.40\)
Vì tất cả các số hạng của biểu thức C đều chia hết cho 40
\(\Rightarrow C⋮40\)
Vậy \(C⋮40\)
M=1+3+3^2+......+3^117+3^118+3^119
M=3^0+3^1+3^2+......+3^117+3^118+3^119
M có số hạng là:
(119-0):1+1=120(số)
Vì 120 chia hết cho 3 nên ta chia dãy số M thành các nhóm,mỗi nhóm có 3 số hạng
Ta có:M=3^0+3^1+3^2+......+3^117+3^118+3^119
M=(3^0+3^1+3^2)+......+(3^117+3^118+3^119)
M=3^0.(1+3+3^2)+.......+3^117.(1+3+3^2)
M=3^0.13+......+3^117.13
M=13.(3^0+.....+3^117)
=>M chia hết cho 13
Đầu bài sai rồi bạn ơi vì tất cả các số sau số 1 đều chia hết cho 3 mà 1 chia 3 dư 1 nên M chia 3 dư 1
\(B=2+2^2+2^3+...+2^{60}\)
\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{58}\right)⋮7\)
\(B=3+3^2+3^3+...+3^{118}+3^{119}+3^{120}\\ =\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{118}+3^{119}+3^{120}\right)\\ =3.\left(1+3+3^2\right)+3^4.\left(1+3+3^2\right)+...+3^{118}\left(1+3+3^2\right)\\ =\left(3+3^4+...+3^{118}\right).\left(1+3+3^2\right)\\ =\left(3+3^4+...+3^{118}\right).13⋮13\left(ĐPCM\right)\)
thanks